• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo de várias variáveis] Problema de regra da cadeia

[Cálculo de várias variáveis] Problema de regra da cadeia

Mensagempor Hoteri » Seg Dez 05, 2016 23:56

Boa noite, amigos. Há muito tempo tento resolver este problema:

Seja $z=f(x,y)$. Considere $g(u,v)=uf(u^2, 2uv)$. Calcule $\dfrac{\partial^2g}{\partial u \, \partial v}(1,1)$ se $f(1,2)=4$, $\nabla f(1,2)=(3,-1)$,  $\dfrac{\partial^2f}{\partial x^2}(1,2)= \dfrac{\partial^2f}{\partial y^2}(1,2)=1$ e $\dfrac{\partial^2f}{\partial x \,\partial y}(1,2)=-1$.

Primeiramente, calculei \dfrac{\partial g}{\partial v}:

$\dfrac{\partial g}{\partial v}=u\cdot\dfrac{d}{dv}f(u^2,2uv)+0 \cdot f(u^2,2uv)=u\cdot\left(\dfrac{\partial f}{\partial x}(x,y)\dfrac{dx}{dv}+\dfrac{\partial f}{\partial y}(x,y)\dfrac{dy}{dv}\right)=2u^2\dfrac{\partial f}{\partial y}(x,y)$

E, então, $\dfrac{\partial^2g}{\partial u \, \partial v}$:

$\dfrac{\partial}{\partial u}\left(\dfrac{\partial g}{\partial v}\right)=\dfrac{\partial}{\partial u}\left(2u^2\cdot\dfrac{\partial f}{\partial y}(x,y)\right)=4u\cdot\dfrac{\partial f}{\partial y}(x,y)+2u^2\cdot\dfrac{\partial}{\partial u}\left(\dfrac{\partial f}{\partial y}(x,y)\right)= 4u\cdot\dfrac{\partial f}{\partial y}(x,y)+2u^2\cdot\left(\dfrac{\partial^2f}{\partial x\partial y}(x,y)\dfrac{dx}{du}+\dfrac{\partial^2f}{\partial y^2}(x,y)\dfrac{dy}{du}\right)=4u\cdot\dfrac{\partial f}{\partial y}(x,y)+2u^2\cdot\left(2u\dfrac{\partial^2f}{\partial x\partial y}+2v\dfrac{\partial^2f}{\partial y^2}\right)$

Não sei se estou fazendo isto corretamente. Sou novo nesta área do Cálculo e, no meio do caminho da resolução, sinto que me perdi e não sei como prosseguir a partir daqui ou relacionar com os dados disponibilizados no enunciado. Agradeço a ajuda desde já.
Hoteri
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Dez 05, 2016 23:39
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Cálculo de várias variáveis] Problema de regra da cadei

Mensagempor adauto martins » Qui Dez 08, 2016 09:09

primeiramente vamos encontrar uma expressao para z=f(x,y) usando as condiçoes a),b)...
a diferencial total de z=f(x,y) é dado por:
\Delta f(x,y)=(\partial f/\partial x).dx+(\partial f/\partial y).dy...com a condiçao b)teremos:
f(x,y)=3x-y+c,onde c é devido a integraçao indefinida...usando a condiçao a)f(1,2)=3.1-2+c=4\Rightarrow c=3...,logo:
z=f(x,y)=3x-y+3\Rightarrow g(v,u)=u.f({u}^{2},2uv)=u.(3{u}^{2}-2uv+3)\Rightarrow g(u,v)={u}^{3}-2{u}^{2}.v+3u...,usandos as outras condiçoes procede-se o calculo da derivada mista,calcule-o...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 16 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?