• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivar

Derivar

Mensagempor fcosta » Ter Nov 29, 2016 12:32

Boa tarde!
Alguém por favor pode me dizer como derivo isso: f(x)=a{r}^{2}\left({r}_{0}-r \right)
fcosta
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Nov 29, 2016 12:04
Formação Escolar: GRADUAÇÃO
Área/Curso: tecnologia em automação
Andamento: cursando

Re: Derivar

Mensagempor Cleyson007 » Qua Nov 30, 2016 09:23

fcosta escreveu:f(x)=a{r}^{2}\left({r}_{0}-r \right)


Isso não é uma função de x. O correto é: f(r)=a{r}^{2}\left({r}_{0}-r \right)

Para derivar esta função utilize a Regra do Produto.

f' (r) = 2ar (ro - r) + (-1)(ar²) = 2arro - 3ar²

Repare que como estou derivando em função de "r" o ro é constante, logo, sua derivada é zero.

Sou professor de Matemática e tenho um trabalho muito bacana destinado a ajudar alunos que possuem muita dificuldade. Caso tenha interesse deixo o meu contato via WhatsApp (38) 99889-5755.

Estou com um pacote promocional de video-aula via Skype.

Qualquer dúvida estou a disposição.

Abraço,

Prof. Clésio
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1205
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Derivar

Mensagempor fcosta » Qua Nov 30, 2016 13:35

Olá, professor!
Então eu continuei e cheguei ao máximo de r=\frac{2ro}{3}
Está certo?
fcosta
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Nov 29, 2016 12:04
Formação Escolar: GRADUAÇÃO
Área/Curso: tecnologia em automação
Andamento: cursando

Re: Derivar

Mensagempor Cleyson007 » Qua Nov 30, 2016 17:34

Exatamente :y:

O máximo ocorre quando f ' = 0 (Derivada da função f é igual a zero).

Pensou na proposta que lhe apresentei?

Abraço
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1205
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Derivar

Mensagempor fcosta » Qua Nov 30, 2016 18:54

Sim pensei...
Logo entro em contato!
Obrigado
fcosta
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Nov 29, 2016 12:04
Formação Escolar: GRADUAÇÃO
Área/Curso: tecnologia em automação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.