• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivar

Derivar

Mensagempor fcosta » Ter Nov 29, 2016 12:32

Boa tarde!
Alguém por favor pode me dizer como derivo isso: f(x)=a{r}^{2}\left({r}_{0}-r \right)
fcosta
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Nov 29, 2016 12:04
Formação Escolar: GRADUAÇÃO
Área/Curso: tecnologia em automação
Andamento: cursando

Re: Derivar

Mensagempor Cleyson007 » Qua Nov 30, 2016 09:23

fcosta escreveu:f(x)=a{r}^{2}\left({r}_{0}-r \right)


Isso não é uma função de x. O correto é: f(r)=a{r}^{2}\left({r}_{0}-r \right)

Para derivar esta função utilize a Regra do Produto.

f' (r) = 2ar (ro - r) + (-1)(ar²) = 2arro - 3ar²

Repare que como estou derivando em função de "r" o ro é constante, logo, sua derivada é zero.

Sou professor de Matemática e tenho um trabalho muito bacana destinado a ajudar alunos que possuem muita dificuldade. Caso tenha interesse deixo o meu contato via WhatsApp (38) 99889-5755.

Estou com um pacote promocional de video-aula via Skype.

Qualquer dúvida estou a disposição.

Abraço,

Prof. Clésio
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1215
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Derivar

Mensagempor fcosta » Qua Nov 30, 2016 13:35

Olá, professor!
Então eu continuei e cheguei ao máximo de r=\frac{2ro}{3}
Está certo?
fcosta
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Nov 29, 2016 12:04
Formação Escolar: GRADUAÇÃO
Área/Curso: tecnologia em automação
Andamento: cursando

Re: Derivar

Mensagempor Cleyson007 » Qua Nov 30, 2016 17:34

Exatamente :y:

O máximo ocorre quando f ' = 0 (Derivada da função f é igual a zero).

Pensou na proposta que lhe apresentei?

Abraço
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1215
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Derivar

Mensagempor fcosta » Qua Nov 30, 2016 18:54

Sim pensei...
Logo entro em contato!
Obrigado
fcosta
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Nov 29, 2016 12:04
Formação Escolar: GRADUAÇÃO
Área/Curso: tecnologia em automação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.