• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Regra da Cadeira

Regra da Cadeira

Mensagempor fignath » Dom Nov 27, 2016 08:40

.
Anexos
duvida resposta.jpg
resposta
duvida resposta.jpg (3.1 KiB) Exibido 1275 vezes
duvida.jpg
enunciado
fignath
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Nov 27, 2016 08:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Regra da Cadeira

Mensagempor adauto martins » Qui Dez 01, 2016 11:11

tomemos a velocidade da trajetoria em algum plano z=f(x,y)=c,c\in \Re,q.sera dada por:
v=(\partial f/\partial x,\partial f/\partial y)(x,y)=({f}_{x},{f}_{y})(x,y),onde (x,y) um ponto qquer da trajetoria do plano z=f(x,y)=c...queremos a componente perpendicular em z,com relaçao ao vetor velocidade no ponto (2,-3),ou seja z'=({f}_{x},{f}_{y})(2,-3)...logo:
(\partial z/ \partial t)*z'(2,-3)=0\Rightarrow (\partial z/ \partial t)*({f}_{x},{f}_{y})(2,-3)=
(\partial z/ \partial t)*(-2x/\sqrt[]{(49-{x}^{2}-{y}^{2}}),-2y/\sqrt[]{(49-{x}^{2}-{y}^{2}})(2,-3)=0
\Rightarrow (\partial z/\partial t)((-4/7)+(6/7))=0\Rightarrow \partial z/\partial t=-7/2...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 679
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Regra da Cadeira

Mensagempor adauto martins » Qui Dez 01, 2016 16:42

a resoluçao dessa questao esta incorreta,logo q. a resolver postarei...obrigado
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 679
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Regra da Cadeira

Mensagempor adauto martins » Sáb Dez 03, 2016 13:25

primeiramente a pergunta da questao esta mal formulada...o que o autor pede esta calculado acima,como fiz e seria:
\partial z/\partial t=0...,onde meu erro foi na derivada,ao qual é:
f'(x,y)=(-x/\sqrt[]{49-{x}^{2}-{y}^{2}},-y/\sqrt[]{49-{x}^{2}-{y}^{2}}),no ponto (2,-3),seria:
f'(x,y)=(-2/6,3/6)=(-1/3,1/2)......bom,talvez o autor pede o versor normal á tangente(velocidade)...ai o calculo seria:
n=f''(x,y)/\left|f''(x,y) \right|,q. mede a aceleraçao centrifuga(ou centripeta,caso com sinal negativo) do ponto na curva...que é o que geralmente costuma-se se pedir...bom,é isso é o que eu pude analisar...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 679
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 13 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59