• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Regra da Cadeira

Regra da Cadeira

Mensagempor fignath » Dom Nov 27, 2016 08:40

.
Anexos
duvida resposta.jpg
resposta
duvida resposta.jpg (3.1 KiB) Exibido 1782 vezes
duvida.jpg
enunciado
fignath
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Nov 27, 2016 08:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Regra da Cadeira

Mensagempor adauto martins » Qui Dez 01, 2016 11:11

tomemos a velocidade da trajetoria em algum plano z=f(x,y)=c,c\in \Re,q.sera dada por:
v=(\partial f/\partial x,\partial f/\partial y)(x,y)=({f}_{x},{f}_{y})(x,y),onde (x,y) um ponto qquer da trajetoria do plano z=f(x,y)=c...queremos a componente perpendicular em z,com relaçao ao vetor velocidade no ponto (2,-3),ou seja z'=({f}_{x},{f}_{y})(2,-3)...logo:
(\partial z/ \partial t)*z'(2,-3)=0\Rightarrow (\partial z/ \partial t)*({f}_{x},{f}_{y})(2,-3)=
(\partial z/ \partial t)*(-2x/\sqrt[]{(49-{x}^{2}-{y}^{2}}),-2y/\sqrt[]{(49-{x}^{2}-{y}^{2}})(2,-3)=0
\Rightarrow (\partial z/\partial t)((-4/7)+(6/7))=0\Rightarrow \partial z/\partial t=-7/2...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 679
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Regra da Cadeira

Mensagempor adauto martins » Qui Dez 01, 2016 16:42

a resoluçao dessa questao esta incorreta,logo q. a resolver postarei...obrigado
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 679
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Regra da Cadeira

Mensagempor adauto martins » Sáb Dez 03, 2016 13:25

primeiramente a pergunta da questao esta mal formulada...o que o autor pede esta calculado acima,como fiz e seria:
\partial z/\partial t=0...,onde meu erro foi na derivada,ao qual é:
f'(x,y)=(-x/\sqrt[]{49-{x}^{2}-{y}^{2}},-y/\sqrt[]{49-{x}^{2}-{y}^{2}}),no ponto (2,-3),seria:
f'(x,y)=(-2/6,3/6)=(-1/3,1/2)......bom,talvez o autor pede o versor normal á tangente(velocidade)...ai o calculo seria:
n=f''(x,y)/\left|f''(x,y) \right|,q. mede a aceleraçao centrifuga(ou centripeta,caso com sinal negativo) do ponto na curva...que é o que geralmente costuma-se se pedir...bom,é isso é o que eu pude analisar...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 679
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}