• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Regra da Cadeira

Regra da Cadeira

Mensagempor fignath » Dom Nov 27, 2016 08:40

.
Anexos
duvida resposta.jpg
resposta
duvida resposta.jpg (3.1 KiB) Exibido 1088 vezes
duvida.jpg
enunciado
fignath
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Nov 27, 2016 08:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Regra da Cadeira

Mensagempor adauto martins » Qui Dez 01, 2016 11:11

tomemos a velocidade da trajetoria em algum plano z=f(x,y)=c,c\in \Re,q.sera dada por:
v=(\partial f/\partial x,\partial f/\partial y)(x,y)=({f}_{x},{f}_{y})(x,y),onde (x,y) um ponto qquer da trajetoria do plano z=f(x,y)=c...queremos a componente perpendicular em z,com relaçao ao vetor velocidade no ponto (2,-3),ou seja z'=({f}_{x},{f}_{y})(2,-3)...logo:
(\partial z/ \partial t)*z'(2,-3)=0\Rightarrow (\partial z/ \partial t)*({f}_{x},{f}_{y})(2,-3)=
(\partial z/ \partial t)*(-2x/\sqrt[]{(49-{x}^{2}-{y}^{2}}),-2y/\sqrt[]{(49-{x}^{2}-{y}^{2}})(2,-3)=0
\Rightarrow (\partial z/\partial t)((-4/7)+(6/7))=0\Rightarrow \partial z/\partial t=-7/2...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 675
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Regra da Cadeira

Mensagempor adauto martins » Qui Dez 01, 2016 16:42

a resoluçao dessa questao esta incorreta,logo q. a resolver postarei...obrigado
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 675
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Regra da Cadeira

Mensagempor adauto martins » Sáb Dez 03, 2016 13:25

primeiramente a pergunta da questao esta mal formulada...o que o autor pede esta calculado acima,como fiz e seria:
\partial z/\partial t=0...,onde meu erro foi na derivada,ao qual é:
f'(x,y)=(-x/\sqrt[]{49-{x}^{2}-{y}^{2}},-y/\sqrt[]{49-{x}^{2}-{y}^{2}}),no ponto (2,-3),seria:
f'(x,y)=(-2/6,3/6)=(-1/3,1/2)......bom,talvez o autor pede o versor normal á tangente(velocidade)...ai o calculo seria:
n=f''(x,y)/\left|f''(x,y) \right|,q. mede a aceleraçao centrifuga(ou centripeta,caso com sinal negativo) do ponto na curva...que é o que geralmente costuma-se se pedir...bom,é isso é o que eu pude analisar...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 675
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)