• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada] ajuda para achar quais pontos a função é diferenc

[Derivada] ajuda para achar quais pontos a função é diferenc

Mensagempor leohapo » Seg Nov 21, 2016 17:46

Olá, gostaria de saber para que pontos a função h(x)= |x-1|+|x+2| é diferenciável? E como é o gráfico de h(x) e h'(x).
leohapo
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Nov 21, 2016 17:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Arquitetura
Andamento: cursando

Re: [Derivada] ajuda para achar quais pontos a função é dife

Mensagempor adauto martins » Sáb Dez 10, 2016 11:18

1)
\left|x-1 \right|=x-1,(x-1)\succeq 0...x \succeq 1



\left|x-1 \right|=-(x-1),(x-1)\prec 0...x\prec 1

\left|x+2 \right|=x+2,(x+2) \succeq 0...x \succeq -2



\left|x+2 \right|=-(x+2),(x+2)\prec 0...x\prec -2

2)
o dominio da funçao sera:
D(h)={x\prec -2,-2\preceq x\prec 1,x\succeq 1}

p/x\prec -2\Rightarrow h(x)=-(x-1)+(-(x+2))=-2x-1\Rightarrow h'(x)=-2...

p/-2\preceq x\prec 1\Rightarrow h(x)=-(x-1)+(x+2)=3\Rightarrow h'(x)=0...

p/x\succeq 1\Rightarrow h(x)=(x-1)+(x+2)=2x+1\Rightarrow h'(x)=2...

agora para sabermos os pontos onde a funçao é diferencial,teremos q. ter:

a)h'({-2}^{-})=h'({-2}^{+})...h'({1}^{-})=h'({1}^{+})...,ou seja verificar se a derivada da funçao nesses pontos,a saber (-2,1) é continua,pois nos demais pontos da reta h'(x) é continua,como mostramos acima...
mostrar q. a funçao é continua é mostrar os seguintes limites:
\lim_{x\rightarrow {-2}^{-}}(h(x)-h(-2)/(x-(-2))=\lim_{x\rightarrow {-2}^{+}}(h(x)-h(-2)/(x-(-2))...

da mesma forma...
\lim_{x\rightarrow {1}^{-}}(h(x)-h(1)/(x-1)=\lim_{x\rightarrow {1}^{+}}(h(x)-h(1)/(x-1))...,fica como exercicio...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 670
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59