• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada] ajuda para achar quais pontos a função é diferenc

[Derivada] ajuda para achar quais pontos a função é diferenc

Mensagempor leohapo » Seg Nov 21, 2016 17:46

Olá, gostaria de saber para que pontos a função h(x)= |x-1|+|x+2| é diferenciável? E como é o gráfico de h(x) e h'(x).
leohapo
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Nov 21, 2016 17:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Arquitetura
Andamento: cursando

Re: [Derivada] ajuda para achar quais pontos a função é dife

Mensagempor adauto martins » Sáb Dez 10, 2016 11:18

1)
\left|x-1 \right|=x-1,(x-1)\succeq 0...x \succeq 1



\left|x-1 \right|=-(x-1),(x-1)\prec 0...x\prec 1

\left|x+2 \right|=x+2,(x+2) \succeq 0...x \succeq -2



\left|x+2 \right|=-(x+2),(x+2)\prec 0...x\prec -2

2)
o dominio da funçao sera:
D(h)={x\prec -2,-2\preceq x\prec 1,x\succeq 1}

p/x\prec -2\Rightarrow h(x)=-(x-1)+(-(x+2))=-2x-1\Rightarrow h'(x)=-2...

p/-2\preceq x\prec 1\Rightarrow h(x)=-(x-1)+(x+2)=3\Rightarrow h'(x)=0...

p/x\succeq 1\Rightarrow h(x)=(x-1)+(x+2)=2x+1\Rightarrow h'(x)=2...

agora para sabermos os pontos onde a funçao é diferencial,teremos q. ter:

a)h'({-2}^{-})=h'({-2}^{+})...h'({1}^{-})=h'({1}^{+})...,ou seja verificar se a derivada da funçao nesses pontos,a saber (-2,1) é continua,pois nos demais pontos da reta h'(x) é continua,como mostramos acima...
mostrar q. a funçao é continua é mostrar os seguintes limites:
\lim_{x\rightarrow {-2}^{-}}(h(x)-h(-2)/(x-(-2))=\lim_{x\rightarrow {-2}^{+}}(h(x)-h(-2)/(x-(-2))...

da mesma forma...
\lim_{x\rightarrow {1}^{-}}(h(x)-h(1)/(x-1)=\lim_{x\rightarrow {1}^{+}}(h(x)-h(1)/(x-1))...,fica como exercicio...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 679
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.