• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada] ajuda para achar quais pontos a função é diferenc

[Derivada] ajuda para achar quais pontos a função é diferenc

Mensagempor leohapo » Seg Nov 21, 2016 17:46

Olá, gostaria de saber para que pontos a função h(x)= |x-1|+|x+2| é diferenciável? E como é o gráfico de h(x) e h'(x).
leohapo
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Nov 21, 2016 17:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Arquitetura
Andamento: cursando

Re: [Derivada] ajuda para achar quais pontos a função é dife

Mensagempor adauto martins » Sáb Dez 10, 2016 11:18

1)
\left|x-1 \right|=x-1,(x-1)\succeq 0...x \succeq 1



\left|x-1 \right|=-(x-1),(x-1)\prec 0...x\prec 1

\left|x+2 \right|=x+2,(x+2) \succeq 0...x \succeq -2



\left|x+2 \right|=-(x+2),(x+2)\prec 0...x\prec -2

2)
o dominio da funçao sera:
D(h)={x\prec -2,-2\preceq x\prec 1,x\succeq 1}

p/x\prec -2\Rightarrow h(x)=-(x-1)+(-(x+2))=-2x-1\Rightarrow h'(x)=-2...

p/-2\preceq x\prec 1\Rightarrow h(x)=-(x-1)+(x+2)=3\Rightarrow h'(x)=0...

p/x\succeq 1\Rightarrow h(x)=(x-1)+(x+2)=2x+1\Rightarrow h'(x)=2...

agora para sabermos os pontos onde a funçao é diferencial,teremos q. ter:

a)h'({-2}^{-})=h'({-2}^{+})...h'({1}^{-})=h'({1}^{+})...,ou seja verificar se a derivada da funçao nesses pontos,a saber (-2,1) é continua,pois nos demais pontos da reta h'(x) é continua,como mostramos acima...
mostrar q. a funçao é continua é mostrar os seguintes limites:
\lim_{x\rightarrow {-2}^{-}}(h(x)-h(-2)/(x-(-2))=\lim_{x\rightarrow {-2}^{+}}(h(x)-h(-2)/(x-(-2))...

da mesma forma...
\lim_{x\rightarrow {1}^{-}}(h(x)-h(1)/(x-1)=\lim_{x\rightarrow {1}^{+}}(h(x)-h(1)/(x-1))...,fica como exercicio...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 679
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}