• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada direcional

Derivada direcional

Mensagempor Jadiel Carlos » Seg Nov 21, 2016 11:14

Olá pessoal não estou conseguindo responder a seguinte questão. Se souber, agradeço.
Anexos
IMG-20161121-WA0004-1[1].jpg
Derivada direcional
Jadiel Carlos
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Nov 07, 2016 00:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matematica
Andamento: cursando

Re: Derivada direcional

Mensagempor adauto martins » Qua Nov 23, 2016 18:42

D(f)=(\partial f/\partial x,\partial f/\partial y,\partial f/\partial z)*u=({f}_{x},{f}_{y},{f}_{z})*uD(f)=(\partial f/ \partial x,\partial f/ \partial y,\partial f/ \partial z)(1,2,-2)*u=({f}_{x},{f}_{y},{f}_{z})(1,2,-2)*u...
{u}_{t}=\alpha'(t)/(\left|\alpha'(t) \right|)...\alpha(t)=(t,2cos(t-1),-2{e}^{t-1})\Rightarrow \alpha'(t)=(1,-2sen(t-1),-2(t-1){e}^{t-1})...p/t\in [1,1+\pi],entao:
{D(f)}_{{u}_{t}}=({e}^{{y}^{2}-{z}^{2}},2xy.e^
{{y}^{2}-{z}^{2}},-2xz{e}^{{y}^{2}-{z}^{2}})(1,2,-2)*(\alpha'(t)/(\left|\alpha'(t) \right|)=...bom ai é fazer contas,calcule...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 679
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Derivada direcional

Mensagempor Jadiel Carlos » Qui Nov 24, 2016 01:16

Valeu!!! Muito obrigado.
Jadiel Carlos
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Nov 07, 2016 00:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59