• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada direcional

Derivada direcional

Mensagempor Jadiel Carlos » Seg Nov 21, 2016 11:14

Olá pessoal não estou conseguindo responder a seguinte questão. Se souber, agradeço.
Anexos
IMG-20161121-WA0004-1[1].jpg
Derivada direcional
Jadiel Carlos
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Nov 07, 2016 00:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matematica
Andamento: cursando

Re: Derivada direcional

Mensagempor adauto martins » Qua Nov 23, 2016 18:42

D(f)=(\partial f/\partial x,\partial f/\partial y,\partial f/\partial z)*u=({f}_{x},{f}_{y},{f}_{z})*uD(f)=(\partial f/ \partial x,\partial f/ \partial y,\partial f/ \partial z)(1,2,-2)*u=({f}_{x},{f}_{y},{f}_{z})(1,2,-2)*u...
{u}_{t}=\alpha'(t)/(\left|\alpha'(t) \right|)...\alpha(t)=(t,2cos(t-1),-2{e}^{t-1})\Rightarrow \alpha'(t)=(1,-2sen(t-1),-2(t-1){e}^{t-1})...p/t\in [1,1+\pi],entao:
{D(f)}_{{u}_{t}}=({e}^{{y}^{2}-{z}^{2}},2xy.e^
{{y}^{2}-{z}^{2}},-2xz{e}^{{y}^{2}-{z}^{2}})(1,2,-2)*(\alpha'(t)/(\left|\alpha'(t) \right|)=...bom ai é fazer contas,calcule...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 671
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Derivada direcional

Mensagempor Jadiel Carlos » Qui Nov 24, 2016 01:16

Valeu!!! Muito obrigado.
Jadiel Carlos
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Nov 07, 2016 00:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}