• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada direcional

Derivada direcional

Mensagempor Jadiel Carlos » Seg Nov 21, 2016 11:14

Olá pessoal não estou conseguindo responder a seguinte questão. Se souber, agradeço.
Anexos
IMG-20161121-WA0004-1[1].jpg
Derivada direcional
Jadiel Carlos
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Seg Nov 07, 2016 00:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matematica
Andamento: cursando

Re: Derivada direcional

Mensagempor adauto martins » Qua Nov 23, 2016 18:42

D(f)=(\partial f/\partial x,\partial f/\partial y,\partial f/\partial z)*u=({f}_{x},{f}_{y},{f}_{z})*uD(f)=(\partial f/ \partial x,\partial f/ \partial y,\partial f/ \partial z)(1,2,-2)*u=({f}_{x},{f}_{y},{f}_{z})(1,2,-2)*u...
{u}_{t}=\alpha'(t)/(\left|\alpha'(t) \right|)...\alpha(t)=(t,2cos(t-1),-2{e}^{t-1})\Rightarrow \alpha'(t)=(1,-2sen(t-1),-2(t-1){e}^{t-1})...p/t\in [1,1+\pi],entao:
{D(f)}_{{u}_{t}}=({e}^{{y}^{2}-{z}^{2}},2xy.e^
{{y}^{2}-{z}^{2}},-2xz{e}^{{y}^{2}-{z}^{2}})(1,2,-2)*(\alpha'(t)/(\left|\alpha'(t) \right|)=...bom ai é fazer contas,calcule...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 670
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Derivada direcional

Mensagempor Jadiel Carlos » Qui Nov 24, 2016 01:16

Valeu!!! Muito obrigado.
Jadiel Carlos
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Seg Nov 07, 2016 00:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.