• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada direcional

Derivada direcional

Mensagempor Jadiel Carlos » Seg Nov 21, 2016 11:14

Olá pessoal não estou conseguindo responder a seguinte questão. Se souber, agradeço.
Anexos
IMG-20161121-WA0004-1[1].jpg
Derivada direcional
Jadiel Carlos
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Nov 07, 2016 00:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matematica
Andamento: cursando

Re: Derivada direcional

Mensagempor adauto martins » Qua Nov 23, 2016 18:42

D(f)=(\partial f/\partial x,\partial f/\partial y,\partial f/\partial z)*u=({f}_{x},{f}_{y},{f}_{z})*uD(f)=(\partial f/ \partial x,\partial f/ \partial y,\partial f/ \partial z)(1,2,-2)*u=({f}_{x},{f}_{y},{f}_{z})(1,2,-2)*u...
{u}_{t}=\alpha'(t)/(\left|\alpha'(t) \right|)...\alpha(t)=(t,2cos(t-1),-2{e}^{t-1})\Rightarrow \alpha'(t)=(1,-2sen(t-1),-2(t-1){e}^{t-1})...p/t\in [1,1+\pi],entao:
{D(f)}_{{u}_{t}}=({e}^{{y}^{2}-{z}^{2}},2xy.e^
{{y}^{2}-{z}^{2}},-2xz{e}^{{y}^{2}-{z}^{2}})(1,2,-2)*(\alpha'(t)/(\left|\alpha'(t) \right|)=...bom ai é fazer contas,calcule...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 679
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Derivada direcional

Mensagempor Jadiel Carlos » Qui Nov 24, 2016 01:16

Valeu!!! Muito obrigado.
Jadiel Carlos
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Nov 07, 2016 00:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)