• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites pela definição formal

Limites pela definição formal

Mensagempor ramoncampos » Ter Nov 01, 2016 21:20

Boa noite Pessoal! Tudo bem com vocês?

Eu tenho um exercício que fiquei em dúvida, primeiramente, e aguardarei uma ajuda para a resolução. É o seguinte:

Prove que f(x) = x³ é contínua em p = 2

f(2) = 2³ = 8

Bom, por definição, para todo E > 0 , existe d > 0 tal que |x-2| < d => |f(x)-f(2)| < E .

Desenvolvendo |f(x)-f(2)| < E => |x^3-8| < E => |x^3-2^3| < E => |(x-2)*(x^2+2x+4)| < E => |x-2|*|x^2+2x+4| < E

Daí em diante não sei o que exatamente fazer. Por um livro, descobri que tenho que limitar |x^2+2x+4| porém não sei como fazer isto.

Obrigado a Todos! Bons Estudos! :)

Obs: E: epsilon e d: delta
ramoncampos
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Mar 28, 2015 16:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Limites pela definição formal

Mensagempor adauto martins » Qui Nov 03, 2016 12:04

a questao é:
\lim_{x\rightarrow 2}{x}^{3}=8...no formalismo:
dado \epsilon \succ 0,\exists \delta\succ 0,tal q. \left|{x}^{3}-8 \right|\prec \epsilon...
temos q.x=2 é raiz do polinomio {x}^{3}-8,logo ({x}^{3}-8)/(x-2)={x}^{2}+2x+4\Rightarrow {x}^{3}-8=(x-2).({x}^{2}+2x+4)...{x}^{2}+2x+4,nao tem raizes reais,pois \Delta=-12\prec 0,entao nao temos como reduzir o seu grau p/valores reais...logo:
\left|{x}^{3}-8 \right|=\left|(x-2).({x}^{2}+2x+4) \right|\prec \delta.\left|{x}^{2}+2x+4 \right|...
temos por hipotese q.:\left|x \right|-2\prec \left|x-2 \right|\prec \delta,desiqualdade triangular\Rightarrow \left|x \right|-2\prec \delta\Rightarrow \left|x \right|\prec \delta +2...portanto:
\left|{x}^{2}+2x+4\right|\preceq {\left|x \right|}^{2}+2.\left|x \right|+4,aqui tbem a des.triangular...
portanto:
\left|{x}^{3}-8 \right|\prec \delta.({\left|x \right|}^{2}+2\left|x \right|+4)\prec \delta.({(\delta+2)}^{2}+2.(\delta+2)+4)\prec \epsilon...\left|{x}^{3}-8 \right|\prec \delta.({\delta}^{2}+4\delta+12)\prec\epsilon...pela def. p/um \epsilon \succ 0 dado existe pelo um \delta \succ 0,o qual procuramos o menor,ou seja \delta=min[{\delta}_{1},{\delta}_{2},...]...geralmente,e o mais correto é tomarmos 0\prec (\epsilon,\delta)\prec 1...logo se tomarmos um num.1\prec N,podemos ter:
\left|{x}^{3}-8 \right|\prec \delta.N=\epsilon\Rightarrow \delta=\epsilon/N......o correto mesmo era resolver a inequaçao {\delta}^{3}+4{\delta}^{2}+12\delta-\epsilon \prec 0 e encontrar o menor \delta=f(\epsilon),mas o exposto acima esta tbem correto...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 670
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Limites pela definição formal

Mensagempor ramoncampos » Qui Nov 03, 2016 17:22

Muito obrigado! Mas o que significa esse min {d1,d2,...} ?

Obrigado! :)
ramoncampos
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Mar 28, 2015 16:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Limites pela definição formal

Mensagempor adauto martins » Sex Nov 04, 2016 11:11

em cada \epsilon \succ 0 dado,procuramos nos infinitos \delta's\succ 0 o menor \delta possivel...ai escreve-se dessa forma \delta=min[{\delta}_{1},{\delta}_{2}...],min[...] toma a conotaçao de menor dos deltas possiveis...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 670
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Limites pela definição formal

Mensagempor ramoncampos » Sex Nov 04, 2016 12:39

Entendi! Muito Obrigado amigo! :)
ramoncampos
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Mar 28, 2015 16:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D