Página 1 de 1

Limites pela definição formal

MensagemEnviado: Ter Nov 01, 2016 21:20
por ramoncampos
Boa noite Pessoal! Tudo bem com vocês?

Eu tenho um exercício que fiquei em dúvida, primeiramente, e aguardarei uma ajuda para a resolução. É o seguinte:

Prove que f(x) = x³ é contínua em p = 2

f(2) = 2³ = 8

Bom, por definição, para todo E > 0 , existe d > 0 tal que |x-2| < d => |f(x)-f(2)| < E .

Desenvolvendo |f(x)-f(2)| < E => |x^3-8| < E => |x^3-2^3| < E => |(x-2)*(x^2+2x+4)| < E => |x-2|*|x^2+2x+4| < E

Daí em diante não sei o que exatamente fazer. Por um livro, descobri que tenho que limitar |x^2+2x+4| porém não sei como fazer isto.

Obrigado a Todos! Bons Estudos! :)

Obs: E: epsilon e d: delta

Re: Limites pela definição formal

MensagemEnviado: Qui Nov 03, 2016 12:04
por adauto martins
a questao é:
\lim_{x\rightarrow 2}{x}^{3}=8...no formalismo:
dado \epsilon \succ 0,\exists \delta\succ 0,tal q. \left|{x}^{3}-8 \right|\prec \epsilon...
temos q.x=2 é raiz do polinomio {x}^{3}-8,logo ({x}^{3}-8)/(x-2)={x}^{2}+2x+4\Rightarrow {x}^{3}-8=(x-2).({x}^{2}+2x+4)...{x}^{2}+2x+4,nao tem raizes reais,pois \Delta=-12\prec 0,entao nao temos como reduzir o seu grau p/valores reais...logo:
\left|{x}^{3}-8 \right|=\left|(x-2).({x}^{2}+2x+4) \right|\prec \delta.\left|{x}^{2}+2x+4 \right|...
temos por hipotese q.:\left|x \right|-2\prec \left|x-2 \right|\prec \delta,desiqualdade triangular\Rightarrow \left|x \right|-2\prec \delta\Rightarrow \left|x \right|\prec \delta +2...portanto:
\left|{x}^{2}+2x+4\right|\preceq {\left|x \right|}^{2}+2.\left|x \right|+4,aqui tbem a des.triangular...
portanto:
\left|{x}^{3}-8 \right|\prec \delta.({\left|x \right|}^{2}+2\left|x \right|+4)\prec \delta.({(\delta+2)}^{2}+2.(\delta+2)+4)\prec \epsilon...\left|{x}^{3}-8 \right|\prec \delta.({\delta}^{2}+4\delta+12)\prec\epsilon...pela def. p/um \epsilon \succ 0 dado existe pelo um \delta \succ 0,o qual procuramos o menor,ou seja \delta=min[{\delta}_{1},{\delta}_{2},...]...geralmente,e o mais correto é tomarmos 0\prec (\epsilon,\delta)\prec 1...logo se tomarmos um num.1\prec N,podemos ter:
\left|{x}^{3}-8 \right|\prec \delta.N=\epsilon\Rightarrow \delta=\epsilon/N......o correto mesmo era resolver a inequaçao {\delta}^{3}+4{\delta}^{2}+12\delta-\epsilon \prec 0 e encontrar o menor \delta=f(\epsilon),mas o exposto acima esta tbem correto...

Re: Limites pela definição formal

MensagemEnviado: Qui Nov 03, 2016 17:22
por ramoncampos
Muito obrigado! Mas o que significa esse min {d1,d2,...} ?

Obrigado! :)

Re: Limites pela definição formal

MensagemEnviado: Sex Nov 04, 2016 11:11
por adauto martins
em cada \epsilon \succ 0 dado,procuramos nos infinitos \delta's\succ 0 o menor \delta possivel...ai escreve-se dessa forma \delta=min[{\delta}_{1},{\delta}_{2}...],min[...] toma a conotaçao de menor dos deltas possiveis...

Re: Limites pela definição formal

MensagemEnviado: Sex Nov 04, 2016 12:39
por ramoncampos
Entendi! Muito Obrigado amigo! :)