• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites pela definição

Limites pela definição

Mensagempor Fred Pellegrini » Sex Out 28, 2016 18:21

Como provar os seguintes limites pela definição?

a) Lim (x² - 2x + 1) = 1
x->2


b) lim (x² + 4x + 4) = 1
x->-1

c) lim (3x² - 7x +2) = -2
x->1
Fred Pellegrini
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Out 28, 2016 18:12
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Limites pela definição

Mensagempor adauto martins » Seg Out 31, 2016 10:14

essa questao eu ja resolvi ela uma pa de vezes,mas vamos a mais uma:
definiçao formal de limite:
\lim_{x\rightarrow a}f(x)=L
dado um \varepsilon \succ 0,existe pelo menos um \delta \succ 0(existem ifinitos deltas,por que?),tal que satisfaça a:
\left|f(x)-L \right|\prec \varepsilon...entao vamos a questao a),as outras ficam como exercicios...
\lim_{x\rightarrow 2}({x}^{2}-2x-1)=1...:
entao dado um \varepsilon \succ 0,existe pelo um delta \succ 0,\delta \succ 0...esse \delta tera q. ser em funçao do \varepsilon dado,ou seja:\delta=f(\varepsilon) e geralmente,escolhe-se o menor \delta,ou seja \delta =min[{\delta}_{1},{\delta}_{2},...]...agora vamos ao calculo...temos q.
\left|({x}^{2}-2x+1)-1 \right|\prec \varepsilon\Rightarrow e q.\left|x-2 \right|\prec \delta
\left|{x}^{2}-2x \right|=\left|x \right|.\left|x-2 \right|\prec \left|x \right|.\delta\prec \varepsilon...,como
\left|x \right|-2 \left|x-2 \right|\prec \delta\Rightarrow \left|x \right|\prec \delta+2,logo temos q.
\left|x \right|.\delta \prec (\delta+2).\delta\prec \varepsilon...
{\delta}^{2}+2\delta-\varepsilon \prec 0...resolvendo essa inequaçao,encontraremos dois deltas...
{\delta}_{1}=\sqrt[]{1+\varepsilon}-1,{\delta}_{2}=\sqrt[]{1+\varepsilon}+1......vamos tomar {\delta}_{1}......logo,teremos:
\left|({x}^{2}-2x+1)-1 \right|=\left|{x}^{2}-2x \right|\preceq\left|x \right|.\left|x-2 \right|\prec (\delta+2).\delta={\delta}^{2}+2.\delta={(\sqrt[]{\varepsilon+1}-1})^{2}+2.(\sqrt[]{\varepsilon+1})=...\prec \varepsilon...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 92 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}