• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Aplicação de Integral] Área de Revolução

[Aplicação de Integral] Área de Revolução

Mensagempor carlosce88 » Qua Out 26, 2016 22:40

Pessoal, estou com uma dúvida em relação à área de revolução de uma superfície em torno do eixo y = -2. Ou seja, a rotação será no eixo x, quando y = -2. Esses exemplos não constam nos livros de cálculo. Encontrei apenas exemplos quando y=0 ou x=0. Portanto, peço a ajuda de vocês.

Lembrando que a fórmula de Pappus para a área de uma superfície em revolução em x (que utilizaremos para responder) é dada por:

f(x) = \int_{a}^{b}2\Pi\(f(x)\sqrt[2]{1+f\'(x)^2}

Segue em anexo o problema para melhor visualização.
Pessoal, agradeço aos que tentarem. Não precisam resolver a integral. Apenas equacione-a segundo sua função.

IMG_20161025_141827977.jpg
Lista
carlosce88
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Out 26, 2016 22:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.