• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada] Simples cubo

[Derivada] Simples cubo

Mensagempor Matheus321 » Ter Out 25, 2016 21:13

2) Calcular a derivada de F(x) = x^3 no ponto x = 2

Do jeito que estou fazendo está dando um resultado bem diferente do que atestei no wolframalpha o meu resultado deu lim 75+15+Δx³ , sendo que de acordo com o site o resultado deveria ser 12.

lim F(x0+Δx)³-F(x0)
-----------------------
Δx
Fiz toda o cubo da soma:

(x0³+3*x0²*Δx+3*x0*Δx²+Δx³)-x³
---------------------------------------
Δx

depois:
3x0²+3x0(Δx)²+Δx³
---------------------
Δx

evidencia:

Δx(3x0²+3x0+Δx+Δx²)
--------------------------
Δx

então
3x0²+3x0+Δx+Δx²

depois:
3*5²+3*5+Δx³
Matheus321
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Out 25, 2016 21:01
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Derivada] Simples cubo

Mensagempor DanielFerreira » Sáb Nov 26, 2016 18:46

Olá Matheus!

A derivada da função \mathsf{f} é dada por:

\mathsf{\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(\Delta x)}{\Delta x}}

E, na parte em que colocaste "evidência", devia ter ficado:

\\ \mathsf{\lim_{\Delta x \to 0} \frac{\Delta x \cdot [3 \cdot (x_o)^2 + 3 \cdot x_o \cdot \Delta x + (\Delta x)^2]}{\Delta x} =} \\\\\\ \mathsf{\lim_{\Delta x \to 0} [3 \cdot (x_o)^2 + 3 \cdot x_o \cdot \Delta x + (\Delta x)^2] =}

Por conseguinte, deves substituir \mathsf{\Delta x} por zero.

Por fim, substitua \mathsf{x} por \underline{\mathsf{2}}.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1641
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: