• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada] Simples cubo

[Derivada] Simples cubo

Mensagempor Matheus321 » Ter Out 25, 2016 21:13

2) Calcular a derivada de F(x) = x^3 no ponto x = 2

Do jeito que estou fazendo está dando um resultado bem diferente do que atestei no wolframalpha o meu resultado deu lim 75+15+Δx³ , sendo que de acordo com o site o resultado deveria ser 12.

lim F(x0+Δx)³-F(x0)
-----------------------
Δx
Fiz toda o cubo da soma:

(x0³+3*x0²*Δx+3*x0*Δx²+Δx³)-x³
---------------------------------------
Δx

depois:
3x0²+3x0(Δx)²+Δx³
---------------------
Δx

evidencia:

Δx(3x0²+3x0+Δx+Δx²)
--------------------------
Δx

então
3x0²+3x0+Δx+Δx²

depois:
3*5²+3*5+Δx³
Matheus321
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Out 25, 2016 21:01
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Derivada] Simples cubo

Mensagempor DanielFerreira » Sáb Nov 26, 2016 18:46

Olá Matheus!

A derivada da função \mathsf{f} é dada por:

\mathsf{\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(\Delta x)}{\Delta x}}

E, na parte em que colocaste "evidência", devia ter ficado:

\\ \mathsf{\lim_{\Delta x \to 0} \frac{\Delta x \cdot [3 \cdot (x_o)^2 + 3 \cdot x_o \cdot \Delta x + (\Delta x)^2]}{\Delta x} =} \\\\\\ \mathsf{\lim_{\Delta x \to 0} [3 \cdot (x_o)^2 + 3 \cdot x_o \cdot \Delta x + (\Delta x)^2] =}

Por conseguinte, deves substituir \mathsf{\Delta x} por zero.

Por fim, substitua \mathsf{x} por \underline{\mathsf{2}}.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1630
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.