• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada] Simples cubo

[Derivada] Simples cubo

Mensagempor Matheus321 » Ter Out 25, 2016 21:13

2) Calcular a derivada de F(x) = x^3 no ponto x = 2

Do jeito que estou fazendo está dando um resultado bem diferente do que atestei no wolframalpha o meu resultado deu lim 75+15+Δx³ , sendo que de acordo com o site o resultado deveria ser 12.

lim F(x0+Δx)³-F(x0)
-----------------------
Δx
Fiz toda o cubo da soma:

(x0³+3*x0²*Δx+3*x0*Δx²+Δx³)-x³
---------------------------------------
Δx

depois:
3x0²+3x0(Δx)²+Δx³
---------------------
Δx

evidencia:

Δx(3x0²+3x0+Δx+Δx²)
--------------------------
Δx

então
3x0²+3x0+Δx+Δx²

depois:
3*5²+3*5+Δx³
Matheus321
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Out 25, 2016 21:01
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Derivada] Simples cubo

Mensagempor DanielFerreira » Sáb Nov 26, 2016 18:46

Olá Matheus!

A derivada da função \mathsf{f} é dada por:

\mathsf{\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(\Delta x)}{\Delta x}}

E, na parte em que colocaste "evidência", devia ter ficado:

\\ \mathsf{\lim_{\Delta x \to 0} \frac{\Delta x \cdot [3 \cdot (x_o)^2 + 3 \cdot x_o \cdot \Delta x + (\Delta x)^2]}{\Delta x} =} \\\\\\ \mathsf{\lim_{\Delta x \to 0} [3 \cdot (x_o)^2 + 3 \cdot x_o \cdot \Delta x + (\Delta x)^2] =}

Por conseguinte, deves substituir \mathsf{\Delta x} por zero.

Por fim, substitua \mathsf{x} por \underline{\mathsf{2}}.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1641
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59