• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Aplicação de derivadas] Taxa de variação

[Aplicação de derivadas] Taxa de variação

Mensagempor cesarguedes » Ter Out 25, 2016 20:58

Boa noite, não estou conseguindo resolver o seguinte exercício:

Um cabo de cobre tem diâmetro de 1cm a 0ºC. Suponha que seu comprimento é de 1m e não se altera com a variação da temperatura. Se seu diâmetro aumenta a uma velocidade de 0,02cm/ºC, calcule a taxa de variação do volume desse cabo quando a temperatura está a 20ºC.
resposta= 1,4\pi

Tenho os dados:
d= 1cm
h= 100cm (constante)
dd/dt= 0,02cm/ºC
E quero descobrir dV/dt quando a temperatura for 20ºC
Imaginei que o cabo de cobre seja uma forma cilíndrica, logo a fórmula é \pir².h
Derivei (tomando raio como d/2) e surgiu dV/dt= (\pi.1.100)/2
Porém, prosseguindo, não encontro a resposta certa.
cesarguedes
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Out 25, 2016 20:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Aplicação de derivadas] Taxa de variação

Mensagempor adauto martins » Sex Out 28, 2016 10:43

dV/d\theta=(dV/dr).(dr/d\theta),regra da cadeia...onde V(volume),r(raio),\theta(temperatura)...
temos q.dr/d\theta=0.01,pois d=2.r\Rightarrow dr=0.01d\theta\Rightarrow \int_{1/2}^{r}dr=\int_{0}^{20}d\theta\Rightarrow r-1/2=(0.01)*20\Rightarrow r=0.7cm,raio á temp.de 20°...logo:
dV/d\theta=(d(\pi.{r}^{2})/dr).dr/d\theta=2*\pi*L*r*0.01=2*\pi*100*0.7*0.01=1.4*\pi...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 670
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59