• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Aplicação de derivadas] Taxa de variação

[Aplicação de derivadas] Taxa de variação

Mensagempor cesarguedes » Ter Out 25, 2016 20:58

Boa noite, não estou conseguindo resolver o seguinte exercício:

Um cabo de cobre tem diâmetro de 1cm a 0ºC. Suponha que seu comprimento é de 1m e não se altera com a variação da temperatura. Se seu diâmetro aumenta a uma velocidade de 0,02cm/ºC, calcule a taxa de variação do volume desse cabo quando a temperatura está a 20ºC.
resposta= 1,4\pi

Tenho os dados:
d= 1cm
h= 100cm (constante)
dd/dt= 0,02cm/ºC
E quero descobrir dV/dt quando a temperatura for 20ºC
Imaginei que o cabo de cobre seja uma forma cilíndrica, logo a fórmula é \pir².h
Derivei (tomando raio como d/2) e surgiu dV/dt= (\pi.1.100)/2
Porém, prosseguindo, não encontro a resposta certa.
cesarguedes
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Out 25, 2016 20:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Aplicação de derivadas] Taxa de variação

Mensagempor adauto martins » Sex Out 28, 2016 10:43

dV/d\theta=(dV/dr).(dr/d\theta),regra da cadeia...onde V(volume),r(raio),\theta(temperatura)...
temos q.dr/d\theta=0.01,pois d=2.r\Rightarrow dr=0.01d\theta\Rightarrow \int_{1/2}^{r}dr=\int_{0}^{20}d\theta\Rightarrow r-1/2=(0.01)*20\Rightarrow r=0.7cm,raio á temp.de 20°...logo:
dV/d\theta=(d(\pi.{r}^{2})/dr).dr/d\theta=2*\pi*L*r*0.01=2*\pi*100*0.7*0.01=1.4*\pi...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 679
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 15 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?