• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercicio resolvido

exercicio resolvido

Mensagempor adauto martins » Ter Jul 26, 2016 17:43

provar a irracionalidade do numero e=2.71...
soluçao:
a funçao {e}^{x}expandida em uma serie de taylor prox. a zero é dado por:
{e}^{x}=\sum_{k=1}^{\infty}{x}^{k}/k!,q. pode ser escrita como:
{e}^{x}=\sum_{k=1}^{n}({x}^{k}/k!)+{r}_{k},onde {r}_{k}={d}^{k+1}e(\varepsilon).{\left|{x}^{k+1} \right|}/(k+1)!,e \varepsilon \in (0,x),{d}^{k+1}e(\varepsilon)é a (k+1) derivada de {e}^{x},no ponto \varepsilon e tal q.\lim_{k\rightarrow \infty}{r}_{k}=0...
e=1+1/n!+1/2!+...+1/n!+{r}_{k}(1) e tal que:
{r}_{k}(1)={d}^{k+1}e(\varepsilon).1/(n+1)!={e}^{\varepsilon}/(n+1)!\prec 3/(n+1)!(por que?)...
se tomarmos e=p/q...p,q\succ 0,p,q \in N...,teremos:
p/q=(1+1/2!+1/3!+...+1/n!)+{r}_{k}(1)\Rightarrow n!p=q.((1+1/2!+...+1/n!)+n!.{r}_{k}(1))\Rightarrow n!{r}_{k}(1)\in N,fato q. nao se verifica,pois:
n!{r}_{k}(1)\prec n!3/(n+1)!=3/(n+1)\preceq 1,p/n\succeq 2...cqd...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 16 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}