• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como derivar esta função: (x^3 + 7x^2 -8).(2x^-3 + x^-4)

Como derivar esta função: (x^3 + 7x^2 -8).(2x^-3 + x^-4)

Mensagempor fabio carvalho » Dom Mai 29, 2016 01:50

Como derivar esta função: (x^3 + 7x^2 -8).(2x^-3 + x^-4)
Anexos
derivada função.PNG
derivada função.PNG (2.07 KiB) Exibido 2682 vezes
fabio carvalho
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Mai 29, 2016 01:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Como derivar esta função: (x^3 + 7x^2 -8).(2x^-3 + x^-4)

Mensagempor nakagumahissao » Dom Mai 29, 2016 21:43

Basta Utilizar a Regra da Cadeia.

\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}

Ou seja, derive o que está no primeiro parênteses e multiplique pelo que está no segundo parênteses + derive o que está no segundo parênteses e multiplique pelo que se encontra no primeiro parênteses.

A derivada do que se encontra em cada parênteses é:

\frac{d({x}^{3} + 7{x}^{2} -8)}{dx} =  3{x}^{2} + 14x

e

\frac{d(2{x}^{-3} + {x}^{-4})}{dx} =  -6{x}^{-4} - 4{x}^{-5}

Assim:

\frac{dy}{dx} = \left(3{x}^{2} + 14x \right)\left(2{x}^{-3} + {x}^{-4} \right) + \left(-6{x}^{-4} - 4{x}^{-5} \right)\left({x}^{3} + 7{x}^{2} -8 \right)

Agora é só fazer as continhas para simplificar o resultado.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.