• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Calculo] Calcular a seguinte integral imprópria.

[Calculo] Calcular a seguinte integral imprópria.

Mensagempor karenfreitas » Qua Mai 04, 2016 14:36

Calcular o valor de A, onde A = \frac{9a^2}{2}\int\limits_{0}^{\infty }\frac{x^2}{(1+x^3)^2}dx

Usar x^3 = t \rightarrow  3x^2 dx = dt
DEsde já agradeço quem puder ajudar a resolver esse problema.
karenfreitas
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Mai 04, 2016 14:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Calculo] Calcular a seguinte integral imprópria.

Mensagempor nakagumahissao » Sex Mai 06, 2016 00:54

A = \frac{9{a}^{2}}{2}\int_{0}^{\infty} \frac{{x}^{2}}{{\left(1+{x}^{3} \right)}^{2}} dx\;\;\;\;\;\;\;[1]

Fazendo-se a substituição:

{x}^{3} = t \Rightarrow dt = 3{x}^{2}dx

para:

x \neq 0

e

t \neq -1


tem-se que:

\frac{{x}^{2}}{{\left(1+{x}^{3} \right)}^{2}} dx =  \frac{{x}^{2}}{{x}^{2}{\left(1+t \right)}^{2}} dt = \frac{1}{{\left(1 + t \right)}^{2}}dt

a integral desta fração seria:

\int  \frac{1}{{\left(1 + t \right)}^{2}}dt

utilizando-se da seguinte substituição

u = 1 + t \Rightarrow du = dt,

poderiamos resolver a integral acima da seguinte maneira:

\int  \frac{1}{{\left(1 + t \right)}^{2}}dt = \int \frac{1}{{u}^{2}}du = \int {u}^{-2}du = \frac{{u}^{-3}}{-3} = -\frac{1}{3}\frac{1}{{u}^{3}} = -\frac{1}{3 {\left(1 + t \right)}^{3}} =

Mas,

{x}^{3} = t

Logo,

= -\frac{1}{3 {\left(1 + t \right)}^{3}} = -\frac{1}{3 {\left(1 + {x}^{3} \right)}^{3}}\;\;\;\;\;\;[2]

Finalmente, utilizando-nos dos conhecimentos de integrais impróprias e usando [2] em 1, teremos:

A = \frac{9{a}^{2}}{2}\int_{0}^{\infty} \frac{{x}^{2}}{{\left(1+{x}^{3} \right)}^{2}} dx = \frac{9{a}^{2}}{2} \lim_{m\rightarrow \infty} \int_{0}^{m} \frac{{x}^{2}}{{\left(1+{x}^{3} \right)}^{2}} dx =

= \frac{9{a}^{2}}{2} \lim_{m\rightarrow \infty}  \left[-\frac{1}{3 {\left(1 + {x}^{3} \right)}^{3}} {|}_{0}^{m} \right] = \frac{9{a}^{2}}{2}\left(-\frac{1}{3} \right) \lim_{m\rightarrow \infty}  \left[-\frac{1}{{\left(1 + {x}^{3} \right)}^{3}} {|}_{0}^{m} \right] =

= -\frac{3{a}^{2}}{2} \lim_{m\rightarrow \infty}  \left[-\frac{1}{{\left(1 + {x}^{3} \right)}^{3}} {|}_{0}^{m} \right] = -\frac{3{a}^{2}}{2}\left(-0 + 1 \right) = -\frac{3{a}^{2}}{2}

Que é o resultado procurado, portanto:

A = \frac{9{a}^{2}}{2}\int_{0}^{\infty} \frac{{x}^{2}}{{\left(1+{x}^{3} \right)}^{2}} dx = -\frac{3{a}^{2}}{2}

Espero não ter errado nos cáculos, mas a idéia básica é essa.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 35 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}