• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral Tripla - mudança de variáveis

Integral Tripla - mudança de variáveis

Mensagempor marinalcd » Sáb Abr 09, 2016 00:16

Calcular \int\int\int_{R} \frac{x-y+2z}{x+y-2z} dxdydz, onde R é a região:
R={{(x,y,z): 0\leq x-y+2z \leq 1, 1 \leq x+y-2z \leq 2 \quad \mbox{e}\quad 0 \leq z \leq 1}}.
Não estou conseguindo enxergar a região. Assim não sei se devo fazer mudança de variáveis cilindricas ou esféricas.
Alguém pode me ajudar a enxergar essa região?
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?