• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Otimização]

[Otimização]

Mensagempor armando » Qua Fev 24, 2016 01:00

Uma caixa rectangular, com tampa,possui um volume de 16m^3. Encontre as dimensões que produzem a caixa de menor menor custo, se o material utilizado nas laterais custa metade do utilizado no fundo e na tampa.

Dúvida:
O enunciado desse problema está correcto ? É possível, tal como está, chegar a qualquer resolução ?
Se sim, como ?

É que acho o enunciado confuso.
O que se pretende saber?
Apenas as dimensões e uma caixa rectangular de volume igual a 16 m^3 que possa ser construída com o menor material possível ?
Parece-me que não, porque o enunciado pede para encontrar as dimensões que produzem a caixa de menor custo se o material utilizado nas laterais custa metade do utilizado no fundo e na tampa.
Assim sendo, não deveriam ser dados pelo menos um dos preços dos materiais ? Da lateral ou do fundo/tampa ?

Abaixo seguem três links de vidios sobre questões idênticas, que talvez possam ajudar a esclarecer a minha dúvida.

https://www.youtube.com/watch?v=oCR4vvtjGMw
(Neste caso é uma caixa, só que reforçada em 4 camadas no fundo, 1 na tampa, e 2 dos lados. Como ficaria a resolução se todos os lados fossem simples ?)

https://www.youtube.com/watch?v=32a1Kg0SicU
(Neste caso é um cilindro com materiais com preços diferentes para a lateral e (base + tampa). No caso de serem dados preços no enunciado que postei,tal como os que são dados neste vídeo, como ficaria a resolução em relação à caixa ?)

https://www.youtube.com/watch?v=Gp2OQaVOTNY
( Ver Exemplo 3 aos 32:36 m. Este problema é por meio de derivada, mas a a caixa tem base quadrada ou seja: x = y)

Ou seja:
Eu desejava que alguém me indicasse o método ou equação mais adequada para as duas situações.
Para encontrar as dimensões, e só as dimensões, da caixa, sem preços incorporados na equação.

Ou, se houver um modo de equacionar o problema onde se possa incorporar os preços logo na resolução, tal como no caso do vídeo do cilindro, com os preços já incorporados.

Ou talvez não seja necessária esta última versão, visto que, ao se obter as dimensões da caixa, acham-se a área dos lados, somam-se dois a dois e multiplicam-se pelo respectivos preços; ou sua metade, ou seu o dobro, consoante o preço que for dado, ou o das laterais ou o da tampa/fundo, somam-se e obtém-se o custo. Isto evidentemente, supondo que eram dados preços no enunciado.

Grato pela atenção
Armando
armando
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Abr 01, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 109 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D