• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Otimização]

[Otimização]

Mensagempor armando » Qua Fev 24, 2016 01:00

Uma caixa rectangular, com tampa,possui um volume de 16m^3. Encontre as dimensões que produzem a caixa de menor menor custo, se o material utilizado nas laterais custa metade do utilizado no fundo e na tampa.

Dúvida:
O enunciado desse problema está correcto ? É possível, tal como está, chegar a qualquer resolução ?
Se sim, como ?

É que acho o enunciado confuso.
O que se pretende saber?
Apenas as dimensões e uma caixa rectangular de volume igual a 16 m^3 que possa ser construída com o menor material possível ?
Parece-me que não, porque o enunciado pede para encontrar as dimensões que produzem a caixa de menor custo se o material utilizado nas laterais custa metade do utilizado no fundo e na tampa.
Assim sendo, não deveriam ser dados pelo menos um dos preços dos materiais ? Da lateral ou do fundo/tampa ?

Abaixo seguem três links de vidios sobre questões idênticas, que talvez possam ajudar a esclarecer a minha dúvida.

https://www.youtube.com/watch?v=oCR4vvtjGMw
(Neste caso é uma caixa, só que reforçada em 4 camadas no fundo, 1 na tampa, e 2 dos lados. Como ficaria a resolução se todos os lados fossem simples ?)

https://www.youtube.com/watch?v=32a1Kg0SicU
(Neste caso é um cilindro com materiais com preços diferentes para a lateral e (base + tampa). No caso de serem dados preços no enunciado que postei,tal como os que são dados neste vídeo, como ficaria a resolução em relação à caixa ?)

https://www.youtube.com/watch?v=Gp2OQaVOTNY
( Ver Exemplo 3 aos 32:36 m. Este problema é por meio de derivada, mas a a caixa tem base quadrada ou seja: x = y)

Ou seja:
Eu desejava que alguém me indicasse o método ou equação mais adequada para as duas situações.
Para encontrar as dimensões, e só as dimensões, da caixa, sem preços incorporados na equação.

Ou, se houver um modo de equacionar o problema onde se possa incorporar os preços logo na resolução, tal como no caso do vídeo do cilindro, com os preços já incorporados.

Ou talvez não seja necessária esta última versão, visto que, ao se obter as dimensões da caixa, acham-se a área dos lados, somam-se dois a dois e multiplicam-se pelo respectivos preços; ou sua metade, ou seu o dobro, consoante o preço que for dado, ou o das laterais ou o da tampa/fundo, somam-se e obtém-se o custo. Isto evidentemente, supondo que eram dados preços no enunciado.

Grato pela atenção
Armando
armando
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Abr 01, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 103 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}