• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calcule f(x)

Calcule f(x)

Mensagempor kjelin » Ter Fev 02, 2016 01:39

Sabe-se que f??(x) = xlnx e que f?(1) = f(1) = 0. Calcule f(x).
kjelin
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Ter Fev 02, 2016 01:13
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharelado em química
Andamento: cursando

Re: Calcule f(x)

Mensagempor DanielFerreira » Seg Fev 08, 2016 16:47

Olá Kjelin, seja bem-vindo!

De acordo com o enunciado, f''(x) = x \cdot \ln x; se integrarmos cada lado da igualdade ficamos com f'(x) + c_1 = \int x \cdot \ln x \, dx.

Encontramos a função derivada primeira resolvendo a integral \int x \cdot \ln x \, dx por partes.

Considerando f(x) = \ln x e g'(x) = x dx temos que: f'(x) = \frac{1}{x} \, dx e g(x) = \frac{x^2}{2}.

\\ \int f(x) \cdot g'(x) \, dx = f(x) \cdot g(x) - \int f'(x) \cdot g(x) \, dx \\\\ (...) \\\\ \int x \cdot \ln x \, dx = \frac{x^2 \cdot \ln x}{2} - \frac{x^2}{4} + c_2

Por conseguinte, f'(x) = \frac{x^2 \cdot \ln x}{2} - \frac{x^2}{4} + c_2 - c_1.

Da condição f'(1) = 0, tiramos que c_2 - c_1 = \frac{1}{4}. Então, temos que: \boxed{f'(x) = \frac{x^2 \cdot \ln x}{2} - \frac{x^2}{4} + \frac{1}{4}}.

A fim de encontrar a função f, aplicamos raciocínio análogo ao anterior; ou seja, integramos cada lado da igualdade...

\\ f(x) + c_3 = \int (\frac{x^2 \cdot \ln x}{2} - \frac{x^2}{4} + \frac{1}{4}) \, dx \\\\\\ f(x) + c_3 = \frac{x^3 \cdot \ln x}{6} - \frac{x^3}{6} - \frac{x^3}{12} + \frac{x}{4} + c_4

Obs1.: o primeiro termo do integrando acima foi obtido aplicando uma nova integração por partes;
Obs2.: de f(1) = 0, tiramos que c_4 - c_3 = - \frac{1}{9}.

Por fim, concluímos que \boxed{\boxed{f(x) = \frac{x^3 \cdot \ln x}{6} - \frac{5x^3}{36} + \frac{x}{4} - \frac{1}{9}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1728
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.