• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Prova por Indução

Prova por Indução

Mensagempor Wania123 » Seg Jan 18, 2016 10:15

Como provar a seguinte questão: Uma progressão geométrica de 1º termo a e razão q e uma sequencia do tipo a; aq; aq²; aq³; ...
Se Sn indica a soma dos n primeiros termos de uma progressão geométrica, prove por indução que Sn = a (1-q) / 1- q
OBS: na parte da formula Sn = a(1-q), o q é elevado a n. Eu não consegui inserir o n na formula...
Wania123
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Jan 18, 2016 09:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: formado

Re: Prova por Indução

Mensagempor adauto martins » Dom Jan 24, 2016 13:41

vamos provar q. pra n=1,n=2,confirmam e vamos supor q. n=k,seja correta e tentaremo provar pra n=k+1...
eita esse latex nao funciona ainda!mas vamos la...
n=1,teremos S=a(1-q)/(1-q)=a...n=2,S=a(1-q^2)/(1-q)=a(1-q^2).(1+q)/((1-q)(1+q))=a(1+q)=a+aq,q. confirmam...
seja n=k,implica S=a+aq+...+aq^k=a(1-q^k)/(1-q),entao
S=a+aq+...+aq^k+aq^(k+1)=a(1-q^k)/(1-q)+aq^(k+1)=a(1-q^K)+aq^(k+1).(1-q)/(1-q)=a(1-q^k)+aq^(k+1)-aq^k/(1-q)=a(1-q^(k+1)/(1-q),o q. prova a induçao...
ps-pessoal do site,vamos resolver o problema do latex,pra facilitar a resoluçao...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 705
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.