• Anúncio Global
    Respostas
    Exibições
    Última mensagem

como fazer a derivada dessa função

como fazer a derivada dessa função

Mensagempor eulercx » Sáb Nov 14, 2015 10:27

f(x)=\frac{-{x}^{2}+1}{({x}^{2}+1)^2}
eulercx
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Nov 07, 2015 16:46
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: cursando

Re: como fazer a derivada dessa função

Mensagempor Cleyson007 » Sáb Nov 14, 2015 20:08

Olá amigo, boa noite!

Repare que a função f é racional (dada por um quociente P(x)/Q(x)). Logo, nos é conveniente aplicar a Regra do Quociente! Para isto, fazemos:

f'(x) = P'(x) * Q(x) - Q'(x) * P(x)] / [Q(x)]²

A partir daí consegue concluir sozinho?

Caso queira conhecer o meu trabalho enquanto professor de Matemática, acesse: viewtopic.php?f=151&t=13614

Bons estudos
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1227
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: como fazer a derivada dessa função

Mensagempor eulercx » Sáb Nov 14, 2015 21:09

já fiz pela regra do quociente, mas o resultado não bate com o do livro
eulercx
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Nov 07, 2015 16:46
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: cursando

Re: como fazer a derivada dessa função

Mensagempor Cleyson007 » Sáb Nov 14, 2015 22:09

Sejam,

P(x) = -x² + 1

Q(x) = (x² + 1)²

Você está fazendo P'(x) = -2x e Q'(x) = 2(x² + 1)(2x)?

Por favor, poste o que você. Assim, eu comento onde está o seu erro (ou do gabarito).

Att,

Prof° Clésio
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1227
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: como fazer a derivada dessa função

Mensagempor eulercx » Dom Nov 15, 2015 22:09

\frac{-2x(x^2+1)^2+x^2-1*2(x^2+1)2x}{[(x^2+1)^2]^2}} =\frac{-2x(x^2+1)^2+x^2-1*4x(x^2+1)}{[(x^2+1)^2]^2}
Chego até aqui professor. A partir dai fico perdido e não chego no gabarito da questão que é:\frac{2x(x^2-3)}{(x^2+1)^3}
eulercx
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Nov 07, 2015 16:46
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: cursando

Re: como fazer a derivada dessa função

Mensagempor Cleyson007 » Seg Nov 16, 2015 08:26

Eulercx, o erro está no numerador. O correto é:

f'(x)=\frac{(-2x)(x^2+1)^2-[2(x^2+1)(2x)](-x^2+1)}{(x^2+1)^4}

Sou professor de Matemática e posso lhe ajudar bastante em seus estudos. Caso tenha interesse em conhecer o meu trabalho, acesse: viewtopic.php?f=151&t=13614

Abraço e bons estudos.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1227
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: como fazer a derivada dessa função

Mensagempor eulercx » Seg Nov 16, 2015 09:35

vlw :-D
eulercx
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Nov 07, 2015 16:46
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 47 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D