• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] x no denominador, x tende a 0

[Limites] x no denominador, x tende a 0

Mensagempor AlexanderCanust » Seg Abr 27, 2015 20:37

\lim_{x\rightarrow0}\frac{\sqrt[2]{x+2}+\sqrt[2]{x+6}-\sqrt[2]{6}-\sqrt[2]{2}}{x}

Bom... eu multipliquei a função pelo divisor, e achei x², o que me permitiu "cortar" o x.
\lim_{x\rightarrow0}\frac{x}{\sqrt[2]{x+2}+\sqrt[2]{x+6}-\sqrt[2]{6}-\sqrt[2]{2}}

Porém, mesmo assim eu não posso substituir x por 0, pois ainda assim meu denominador vai igualar a 0.

Desde já agradeço pela ajuda. :)
AlexanderCanust
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Abr 27, 2015 19:41
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências Econômicas
Andamento: cursando

Re: [Limites] x no denominador, x tende a 0

Mensagempor adauto martins » Ter Abr 28, 2015 15:46

L=\lim_{x\rightarrow 0}(\sqrt[]{x+2}-\sqrt[]{2})/x+\lim_{x\rightarrow 0}(\sqrt[]{x+6}-\sqrt[]{6})/x=\lim_{x\rightarrow 0}(\sqrt[]{x+2}-\sqrt[]{2}).(\sqrt[]{x+2}+\sqrt[]{2})/(x.(\sqrt[]{x+2}+\sqrt[]{2}))+\lim_{x\rightarrow 0}(\sqrt[]{x+6}-\sqrt[]{6}).(\sqrt[]{x+6}+\sqrt[]{6})/(x.(\sqrt[]{x+6}+\sqrt[]{6}))=\lim_{x\rightarrow 0}x/(x.(\sqrt[]{x+2}+\sqrt[]{2}))+\lim_{x\rightarrow 0}x/(x.(\sqrt[]{x+6}+\sqrt[]{6}))=\lim_{x\rightarrow 0}1/(\sqrt[]{x+2}+\sqrt[]{2})+\lim_{x\rightarrow 0}1/(\sqrt[]{x+6}+\sqrt[]{6})==1/(2\sqrt[]{2})+1/(2\sqrt[]{6})...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Limites] x no denominador, x tende a 0

Mensagempor AlexanderCanust » Ter Abr 28, 2015 19:40

Perfeito. Muito obrigado. ;)
AlexanderCanust
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Abr 27, 2015 19:41
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências Econômicas
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 39 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}