• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida em Limites

Dúvida em Limites

Mensagempor Rafael-Miranda » Dom Abr 26, 2015 12:57

Bom dia!
Gostaria de pedir a ajuda de alguém para resolver essa questão.
Antes de mais nada, gostaria de dizer que se trata de provar o limite por épsilon e delta.
Estou tendo uma dificuldade enorme, pois envolve restrição de intervalo e eu ainda não consegui compreender essa parte do assunto.
Aqui vai: limite de 9/x+1 quando x tende a 2=3

Comecei assim: Queremos provar que para todo £>0, existe um s>0 tal que 0<x-2<s, então 9/x+1 -3< £.

|(9/x+1) -3| < £ ==> |9-3x-3/x+1| < £ ==>|-3x + 6/x+1| < £ ==> |-3(x-2)/x+1| < £

Como na desigualdade há (x+1) do qual nada se conhece, necessita-se restringir s de modo que encontremos um desigualdade envolvendo-o.

Tomei s < ou = 1 e fiz: -s< x-2 < s ===> -s+2 < x < s+2 ===> 1< x < 3
logo 2< x+1 < 4


Agora, se 0< x-2 < s e x+1<4 , então:

|-3(x-2)/x+1| < 4s ===> |-3| |x-2/x+1| <4s


Nessa parte foi que eu travei. Não sei se em alguma parte eu errei.
Por favor, me ajudem.

Caso possam explicar um pouco sobre como proceder no caso de se fazer necessário restringir, eu iria agradecer muito.
Rafael-Miranda
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Abr 26, 2015 12:40
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado em Engenharia Química
Andamento: cursando

Re: Dúvida em Limites

Mensagempor e8group » Dom Abr 26, 2015 19:33

A ideia a princípio é escolhermos delta positivo de modo a minorar |x+1| por um numero positivo , por conseguinte majoraremos \frac{1}{|x+1|} .

Observe que se 0 < |x-a| < r então |a-b| - |x-b|  \leq |- (x -b) +(a-b) | = |x-a|  < r donde tem-se |x-b| > |a-b| -r , substituindo a e b pelos valores em interesse , vamos obter |x+1| > 3 - r . Veja que sempre que tomarmos 0<r <3 , vamos ter a minoração desejada , destes r> 0 , satisfazendo a propriedade , restringiremos tal arbitrariedade , escolhendo-se um particular(aqui é o nosso \delta > 0 ) para cada \epsilon > 0 dado, de modo que | \frac{9}{x-1} - 3 | < \epsilon sempre que 0 < |x-2| < \delta .



Como de costume , vamos rascunhar , estimar o quao pequeno deve ser o delta ... (A organização das ideias e formalização fica como exercício p vc )

Ora , | \frac{9}{x-1} - 3 | = 3 \frac{|x-2|}{|x+1|}  = 3 \cdot \frac{1}{|x+1|} \cdot |x-2| . Assim, se 0<| x-2|  < \delta , vamos ter

| \frac{9}{x-1} - 3 | < 3 \cdot \frac{1}{3- \delta}  \cdot \delta . Gostaríamos que delta fosse tal que 3 \cdot \frac{1}{3- \delta}  \cdot \delta \leq \epsilon , e sendo temos , 3 \cdot \frac{1}{3- \delta}  \cdot \delta \leq \epsilon \iff 3 \delta \leq 3 \epsilon - \delta \epsilon  \iff \delta (3 + \epsilon )\leq 3 \epsilon \iff \delta \leq \frac{3 \epsilon}{\epsilon + 3} .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Dúvida em Limites

Mensagempor Rafael-Miranda » Dom Abr 26, 2015 20:01

Perdão. Mas eu não compreendi a metade superior da explicação. Somente compreendi algo a partir do momento de inserção do f(x).
Rafael-Miranda
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Abr 26, 2015 12:40
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado em Engenharia Química
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 90 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?