• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Números irracionais

Números irracionais

Mensagempor lacesar » Dom Abr 12, 2015 16:52

Prove que √2+√p é um número irracional se p é um número primo
lacesar
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Abr 12, 2015 16:48
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Números irracionais

Mensagempor adauto martins » Ter Mai 08, 2018 18:41

vamos supor q.tal numero seja racional,ou seja:
\sqrt[]{2}+\sqrt[]{p}=r,r\in Q...
\sqrt[]{p}=r-\sqrt[]{2}\Rightarrow p={(r+\sqrt[]{2})}^{2}={r}^{2}-2r\sqrt[]{2}+2\Rightarrow p=2.(({r}^{2}/2)-r\sqrt[]{2}+1)...para p seja prima,p tera q. sera igual a dois...logo:
({r}^{2}/2)-r\sqrt[]{2}+1=1\Rightarrow r((r/2)-\sqrt[]{2})=0\Rightarrow r=2.\sqrt[]{2}\in \Re-Q... q. contradiz nossa hipotese...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?