• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[calculo] calculo de integral - coordenada esferica

[calculo] calculo de integral - coordenada esferica

Mensagempor fatalshootxd » Ter Mar 31, 2015 00:43

Eu tenho que resolver uma lista para estudar para uma prova porem ha 2 questoes que eu nao consigo fazer nem a pau.Eu ate chego em um resultado porem nao é o que esta no gabarito...que eu até estou achando que está errado...alguem me ajuda? tem que ser pra amanha.
Imagem
fatalshootxd
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Mar 31, 2015 00:30
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia mecanica
Andamento: cursando

Re: [calculo] calculo de integral - coordenada esferica

Mensagempor adauto martins » Sáb Abr 04, 2015 16:13

para o calculo em coordenadas esfericas,temos:
\int_{}^{}\int_{}^{}\int_{S}^{}f(x,y,z)dv=\int_{}^{}\int_{}^{}\int_{S}^{}f(\rho sen\phi cos\theta ,\rho sen\phi  sen\theta , \rho sen\phi){\rho}^{2}sen\phi. d\rho d\phi d\theta,onde {\rho}^{2}sen\phi=\partial(x,y,z)/\partial(\rho,\theta,\phi)q. eh o jacobiano na mudança de variaveis...
entao...\rho ={x}^{2}+{y}^{2}+{z}^{2},,vamos encontrar o ponto de intersecçao dos solidos,ou seja o valor de \rho...\rho =\sqrt[]{3({x}^{2}+{y}^{2})}\Rightarrow {\rho}^{2}/3={x}^{2}+{y}^{2}\Rightarrow \rho=0,\rho=3 e \phi varia em (\pi/2,\pi/4),pois o cone de revoluçao tem raios e altura iguais...logo\int_{0}^{3}{\rho}^{2}/{\rho}^{2}.\int_{\pi/2}^{\pi/4}sen\phi.\int_{0}^{2\pi}d\theta d\phi d\rho=\int_{0}^{3}}.\int_{\pi/2}^{\pi/4}sen\phi.2\pi.d\rho.d\phi=\int_{0}^{3}}(-(cos\pi/2-cos\pi/4).2\pi d\rho=4\pi.\sqrt[]{2}/2\int_{0}^{3}}d\rho=2.3.\sqrt[]{2}\pi=6.\sqrt[]{2}\pi
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}