• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda, Limites com Raizes

Ajuda, Limites com Raizes

Mensagempor rodrigojuara » Ter Mar 10, 2015 22:39

Galera, estou com uma dificuldade em algusn limites, tentei de algumas formas mas nada deu certo.
Gostaria de ajuda.

segue os limites.
\lim_{(x,y,z)\rightarrow (0,0,0)} \frac{XY+YZ}{X^2+Y^2+Z^2}

\lim_{(x,y)\rightarrow (0,0,0)} \frac{3X^2Y^3}{2Y^5-2X^5}

agradeço a ajuda. Obrigado
rodrigojuara
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Nov 30, 2014 15:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia eletrica
Andamento: cursando

Re: Ajuda, Limites com Raizes

Mensagempor adauto martins » Qua Mar 11, 2015 13:21

faz-se... x=rsen\phi.cos\theta,y=rsen\phi.sen\theta,z=rsen\phi,coordenadas esfericas onde \theta,eh o angulo q. a proj.do vetor posiçao (x,y,z) faz com o plano XY, e \phieh o angulo q. o vetor pos.faz com o eixo-Y...entao:
a)L=\lim_{(x,y,z)\rightarrow (0,0,0)}(xy+yz)/({x}^{2}+{y}^{2}+{z}^{2})aqui o L deve depender somente de r,pois os angulos \theta,\phi podem assumir infinitos valores...entao
{r}^{2}={x}^{2}+{y}^{2}+{z}^{2} comprim.do vetor posiçao...L=\lim_{r\rightarrow {0}^{+}}({r}^{2}cos\theta.sen({sen\phi})^{2}+{r}^{2}.{sen\phi}^{2}.sen\theta)/{r}^{2}=L=\lim_{r\rightarrow {0}^{+}}({r}^{2}{sen\phi}^{2}(cos\theta.sen\theta+sen\theta)/{r}^{2}=\lim_{r\rightarrow {0}^{+}}{sen\phi}^{2}(cos\theta.sen\theta+sen\theta)...como L dependera de de \phi,\theta,L nao existe...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59