• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral de função com expoente irracional

Integral de função com expoente irracional

Mensagempor carlos_araujo » Sex Dez 05, 2014 16:54

Olá,
estou com uma dúvida ao resolver a seguinte integral:

I=\int_{0}^{{\beta}x} {\left( 1-\frac{y}{{\beta}x \right)}^{n} dy

onde \beta e x são constantes.
Bem, se n for um número RACIONAL diferente de -1, pode-se fazer da seguinte maneira:

\int_{}^{} {\left( a+bx \right)}^{n} dx = \frac{{\left( a+bx \right)}^{n+1}}{b\left( n+1 \right)}

e assim, teria como resultado daquela integral o seguinte:

I=\frac{{\beta}x}{n+1}

Porém, n tem o valor de:

n=1,4+23,4{\left( \frac{90-fck}{100} \right)}^{4}

onde fck varia de 50 a 90, podendo assumir valor IRRACIONAL. Por exemplo, quando fck é igual a 60, n é igual a 1,58954.

Enfim, minha dúvida é se eu posso integrar como fiz acima ou se tenho de usar exponencial ({u}^{n}={e}^{n\ ln(u)}), séries infinitas ou outro artifício por conta de n ser IRRACIONAL. E, como deveria resolver esta integral?

Desde já agradeço!!!
carlos_araujo
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Dez 05, 2014 16:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Integral de função com expoente irracional

Mensagempor adauto martins » Qua Dez 10, 2014 15:27

um numero irracional e um numero real,entao vc pode integrar como integral de funçoes reais...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 43 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.