• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Conclusão sobre Limite de sucessões

Conclusão sobre Limite de sucessões

Mensagempor EREGON » Sex Nov 14, 2014 15:00

Boa tarde,

gostaria de pedir ajuda para entender como se identifica a tendencia deste limite.

Obrigado
Anexos
Limites_Sucessões.JPG
Limites_Sucessões.JPG (11.78 KiB) Exibido 3354 vezes
EREGON
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Nov 10, 2014 16:00
Formação Escolar: ENSINO MÉDIO
Área/Curso: informatica
Andamento: cursando

Re: Conclusão sobre Limite de sucessões

Mensagempor e8group » Dom Nov 16, 2014 20:03

Uma forma com mais rigor matemático :

Lemma :

Se uma sequência (x_n) é convergente para x  \in \mathbb{N} , então dado y < x existe N \in \mathbb{N} tal que x_n >  y . Prova :

Basta fazer \espilon = x - y  > 0 e usar a definição de convergência de sequência .


Consequência :

Defina x_n = \frac{a_{n+1}}{a_n} . Note que a sequência (x_n) é convergente para k > 1 .Daí , dado y \in (1 , k) ,aplicando o lemma , temos a existência de m \in \mathbb{N} tal que x_n > y e assim a_{n+1} > a_n y  , \forall n \geq m (pois a_n > 0 ) . Veja que

a_{m+1} > a_{m} y

a_{m+2} >  a_{m+1} y >  a_m y^2

a_{m+3}  >  a_{m+2} y  >  a_m y^3

(...)

a_{m+k} >  a_m y^k  ,  k =1,2, \hdots .

Daí , passando ao limite com k \to + \infty , temos a_m y^k \to + \infty e por isso lim(a_n) = + \infty . Caso queira mais rigor , faremos o seguinte , você propõe um número arbitrário , grande o quanto você queira, e mostraremos que a sequência (a_n) contém infinitamente muitos termos (de índices consecutivos ) que excede este número escolhido ... traduzindo

\lim a_n = + \infty  . \equiv .   \forall W>>0  , \exists M \in \mathbb{N}  :  n \geq  M \implies   a_n >  W .

(A notação " >>" é p/ enfatizar que W está distante da origem ) .

Fazendo o seguinte rascunho :

a_m y^k > W temos y^k > \frac{W}{a_m} implicando k >  log_y \frac{W}{a_m} (pois y > 1 ) . Seja então k_0 o menor inteiro positivo que satisfaz esta desigualdade (P.S.: a existência de k_o é assegurada pela pela propriedade Arquimediana ) .Daí , para qualquer índice

k \geq  k_o temos k >   log_y \frac{W}{a_m}  \implies     y^k > \frac{W}{a_m} \implies  a_m y^k >  W .

Mas , como a_{ m + k}  > a_m y^k . Logo , por transitividade , a_{n} >  W (com n = m +k ) sempre que n \geq  k_o + M o que prova formalmente que o limite da sequência (a_n) diverge para + \infty .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Conclusão sobre Limite de sucessões

Mensagempor EREGON » Seg Nov 17, 2014 13:19

Olá santhiago,

um pouco complicado de entender essa resolução. A resolução tem de passar por essas demonstrações?

Obrigado
EREGON
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Nov 10, 2014 16:00
Formação Escolar: ENSINO MÉDIO
Área/Curso: informatica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 64 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}