• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral polar] Superfície de revolução

[Integral polar] Superfície de revolução

Mensagempor Paulo Perez » Sex Out 17, 2014 15:16

Bom dia, preciso de ajuda para resolver esta integral, ela é a integral resultante de outra integral a qual eu resolvi por parte, não sei como desenvolvê-la... quanto mais mecho nela, pior fica, se puderem me ajudar eu agradeço muito.
Obrigado!

\int_{0}^{\pi}sen\theta\sqrt[2]{1 + cos\theta} d\theta
Paulo Perez
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Out 03, 2013 12:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Integral polar] Superfície de revolução

Mensagempor adauto martins » Sex Out 17, 2014 15:49

faz-se u=1+cos\theta,temos du=-sen\thetad\thetaentao:
\int_{0}^{\pi}((\sqrt[2]{u}(-du))=((-2/3){u}^{2/3})
\int_{0}^{\pi}(\sqrt[2]{u}(-du)=(-2/3){u}^{2/3}p/u(0),u(\pi)...subt.nov u=1+cos\theta e calcula a expressao em 0e\pi
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 705
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Integral polar] Superfície de revolução

Mensagempor adauto martins » Sex Out 17, 2014 15:55

uma correçao eh {u}^{3/2}e nao {u}^{2/3}...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 705
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Integral polar] Superfície de revolução

Mensagempor Paulo Perez » Sex Out 17, 2014 18:09

Puts cara, valeu ae, agr eu vi como sou burro de não ter visto isso... Muito Obrigado msm
Paulo Perez
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Out 03, 2013 12:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}