• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral polar] Superfície de revolução

[Integral polar] Superfície de revolução

Mensagempor Paulo Perez » Sex Out 17, 2014 15:16

Bom dia, preciso de ajuda para resolver esta integral, ela é a integral resultante de outra integral a qual eu resolvi por parte, não sei como desenvolvê-la... quanto mais mecho nela, pior fica, se puderem me ajudar eu agradeço muito.
Obrigado!

\int_{0}^{\pi}sen\theta\sqrt[2]{1 + cos\theta} d\theta
Paulo Perez
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Out 03, 2013 12:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Integral polar] Superfície de revolução

Mensagempor adauto martins » Sex Out 17, 2014 15:49

faz-se u=1+cos\theta,temos du=-sen\thetad\thetaentao:
\int_{0}^{\pi}((\sqrt[2]{u}(-du))=((-2/3){u}^{2/3})
\int_{0}^{\pi}(\sqrt[2]{u}(-du)=(-2/3){u}^{2/3}p/u(0),u(\pi)...subt.nov u=1+cos\theta e calcula a expressao em 0e\pi
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Integral polar] Superfície de revolução

Mensagempor adauto martins » Sex Out 17, 2014 15:55

uma correçao eh {u}^{3/2}e nao {u}^{2/3}...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Integral polar] Superfície de revolução

Mensagempor Paulo Perez » Sex Out 17, 2014 18:09

Puts cara, valeu ae, agr eu vi como sou burro de não ter visto isso... Muito Obrigado msm
Paulo Perez
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Out 03, 2013 12:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: