• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral polar] Superfície de revolução

[Integral polar] Superfície de revolução

Mensagempor Paulo Perez » Sex Out 17, 2014 15:16

Bom dia, preciso de ajuda para resolver esta integral, ela é a integral resultante de outra integral a qual eu resolvi por parte, não sei como desenvolvê-la... quanto mais mecho nela, pior fica, se puderem me ajudar eu agradeço muito.
Obrigado!

\int_{0}^{\pi}sen\theta\sqrt[2]{1 + cos\theta} d\theta
Paulo Perez
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Out 03, 2013 12:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Integral polar] Superfície de revolução

Mensagempor adauto martins » Sex Out 17, 2014 15:49

faz-se u=1+cos\theta,temos du=-sen\thetad\thetaentao:
\int_{0}^{\pi}((\sqrt[2]{u}(-du))=((-2/3){u}^{2/3})
\int_{0}^{\pi}(\sqrt[2]{u}(-du)=(-2/3){u}^{2/3}p/u(0),u(\pi)...subt.nov u=1+cos\theta e calcula a expressao em 0e\pi
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Integral polar] Superfície de revolução

Mensagempor adauto martins » Sex Out 17, 2014 15:55

uma correçao eh {u}^{3/2}e nao {u}^{2/3}...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Integral polar] Superfície de revolução

Mensagempor Paulo Perez » Sex Out 17, 2014 18:09

Puts cara, valeu ae, agr eu vi como sou burro de não ter visto isso... Muito Obrigado msm
Paulo Perez
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Out 03, 2013 12:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?