• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites, uma mãozinha aqui

Limites, uma mãozinha aqui

Mensagempor D_Honda » Qui Jan 07, 2010 23:22

Olá!

Inicialmente, gostaria de dizer que sou novo neste fórum.
Muito gostei desse ambiente propicio ao estudo, principalmente na internet, ambiente tão suscetível à outras atividas tão diversas.

Pois bem, meu professor de Cálculo I deixou 7 exercícios interessantes de limites. O curso terminou e não deu tempo dele resolver todos. Dos 7, consegui fazer 3. Gostaria da ajuda de vocês para tentar soluciona-los. Conforme formos resolvendo um, passo o outro.

Desde já agradeço a atenção e peço desculpas se a escrita matemática não ficar clara, é a primeira vez que uso essa linguagem em um computador.

O primeiro:

\lim_{x\to0} \frac  { \sqrt{ax+b} - b }{x}

Tentei fazer o seguinte:

\lim_{x\to0} ( \frac  { \sqrt{ax+b} - b }{x} * \frac { \sqrt{ax+b} + b } {\sqrt{ax+b} + b} )

Mas continuamos com a indeterminação ( = 0 ) no denominador.


Obrigado.

Diego.
D_Honda
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jan 07, 2010 22:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Química
Andamento: cursando

Re: Limites, uma mãozinha aqui

Mensagempor Molina » Sex Jan 08, 2010 13:36

Boa tarde, Diego.

Note que fazendo por esse processo do conjugado na parte do denominador não temos 0, pois x se aproxima de zero, mas nunca "chega" a ele... E cuidado ao usar o termo indeterminação, pois será uma, quando tivermos \frac{0}{0} ou \frac{\infty}{\infty}.

Senão no caso de \lim_{x\rightarrow 0}\frac{1}{x} seria uma indeterminação também. Mas sabemos que isso tende ao infinito.

Vou ver se consigo resolver esta. Pensei por alguma troca de veriável, vamos ver.


Abraços e faça bom uso do fórum. :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Limites, uma mãozinha aqui

Mensagempor D_Honda » Sex Jan 08, 2010 19:49

molina escreveu:Boa tarde, Diego.

Note que fazendo por esse processo do conjugado na parte do denominador não temos 0, pois x se aproxima de zero, mas nunca "chega" a ele... E cuidado ao usar o termo indeterminação, pois será uma, quando tivermos \frac{0}{0} ou \frac{\infty}{\infty}.

Senão no caso de \lim_{x\rightarrow 0}\frac{1}{x} seria uma indeterminação também. Mas sabemos que isso tende ao infinito.

Vou ver se consigo resolver esta. Pensei por alguma troca de veriável, vamos ver.


Abraços e faça bom uso do fórum. :y:



Eu tenho costume de usar o termo "indeterminação" quando aparece zero no denominador, caso esse que devemos evitar.

Quando disse que tinhamos um zero no denominador, é porque se substituirmos o valor que "x" tende no próprio x do denominador o mesmo tenderá a zero. Eu aprendi a fazer essa substituição para achar o valor do limite, mas não sei se apliquei bem. Todavia, obrigado pelo conselho.

Se achar a solução, compartilhe conosco.

Obrigado.
D_Honda
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jan 07, 2010 22:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Química
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D