• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivadas Direcionais]

[Derivadas Direcionais]

Mensagempor leoflnhs » Seg Set 08, 2014 03:22

Olá, sou novo aqui no fórum e minha dúvida é sobre como encontrar as direções em que a derivada direcional da função \[f(x,y)= e^{-xy}\] no ponto (0,2) tem valor 1.

Eu tentei resolver para cair num sistema de equações para encontrar as direções a e b, fazendo o produto escalar do vetor gradiente pelo vetor unitário de direções <a,b> e igualando isso a 1:

\[D_{u}f(x,y)=1 \rightarrow grad f(x,y)\cdot <a,b> = 1\]

\[grad f(x,y) = \frac{\partial f}{\partial x}i + \frac{\partial f}{\partial x}j\]

\[gradf(x,y)=-y^{2}e^{-xy}i+e^{-xy}(1-x)j\]

\[gradf(0,2)=-2^{2}e^{-0*2}i+e^{-0*2}(1-0)j = -4i+j = <-4,1>\]

\[<-4,1>\cdot <a,b>=1\]

\[-4a+b=1\]

Eu cheguei nessa equação que relaciona as direções do vetor, mas falta alguma outra equação para resolver o sistema e encontrar as direções. Alguém poderia me dar uma ajuda por favor?
leoflnhs
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Set 08, 2014 02:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Derivadas Direcionais]

Mensagempor young_jedi » Qua Set 10, 2014 16:12

Oque acontece e que todas as direções que satisfazem essa equação são soluções do problema
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Derivadas Direcionais]

Mensagempor leoflnhs » Qua Set 10, 2014 23:23

Mas teria alguma fórmula que pudesse explicitar todas essas direções?

Encontrei esse problema no livro de Calculo do Stewart vol. 2 (6ª ed.), na página 875, exercicio 28.
leoflnhs
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Set 08, 2014 02:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Derivadas Direcionais]

Mensagempor young_jedi » Qui Set 11, 2014 00:10

Você poderia fazer

-4a+b=1

b=1+4a

portanto todos os vetores do tipo

(a,1+4a)

satisfazem o problema

e da uma conferida na derivada parcial pois

\frac{\partial f}{\partial x}=-y.e^{-xy}

e

\frac{\partial f}{\partial y}=-x.e^{-xy}

portanto

\nabla f(0,2)=-2e^0.i-0.e^0.j
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Derivadas Direcionais]

Mensagempor leoflnhs » Qui Set 11, 2014 01:06

Beleza, eu conferi aqui pelo symbolab e realmente eu tinha errado na derivada parcial do y.

Derivada parcial de y: http://www.symbolab.com/solver/step_by_step/%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20y%7D(ye%5E%7B-xy%7D)/?origin=button
Derivada parcial de x: http://www.symbolab.com/solver/step_by_step/%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20x%7D(ye%5E%7B-xy%7D)/?origin=button

Muito obrigado pela ajuda!
leoflnhs
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Set 08, 2014 02:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?