• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Aplicação de máximos e minimos

Aplicação de máximos e minimos

Mensagempor Fernandobertolaccini » Seg Jul 14, 2014 23:03

O tempo que leva um corpo para percorrer, sem atrito, um plano inclinado de inclinação ? e base b é dado pela fórmula \sqrt[]{\frac{4b}{gsen2\alpha}} onde g é a aceleração da gravidade.
Determinar ? de modo que t seja mínimo.

Resp: ? = 45º
Fernandobertolaccini
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Qui Mai 01, 2014 10:27
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Aplicação de máximos e minimos

Mensagempor e8group » Qua Jul 16, 2014 00:43

Uma forma ... Note que \sqrt{\frac{4b}{gsin(2\alpha)}} = \sqrt{\frac{4b}{g} } \cdot \sqrt{\frac{1}{sin(2\alpha)}} e sin(2 \alpha) \in (0,1] o que implica que \frac{1}{sin(2\alpha) } \geq 1 . Vemos que o menor valor que \frac{1}{sin(2\alpha)} assume é 1 ; ocorrendo quando 2 \alpha = 90^{\circ} ,i.e ,\alpha =45^{\circ} .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.