• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada estudo de sinal

Derivada estudo de sinal

Mensagempor Carolminera » Dom Jul 06, 2014 15:02

Seja
g(x)= x / x^2 + 1

(i) Determine os pontos do gráfico de g em que as retas tangentes, nestes pontos, sejam
paralelas ao eixo x.
(ii) Estude o sinal de g(x).
(iii) Calcule:
g(x) \lim_{\rightarrow+ \infty}
e g(x) \lim_{\rightarrow- \infty}


(iv) Utilizando as informações acima, faça um esboço do gráfico de g.
Carolminera
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qua Jul 02, 2014 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Física Médica
Andamento: cursando

Re: Derivada estudo de sinal

Mensagempor e8group » Dom Jul 06, 2014 20:35

O que você tentou , quais as dúvida especificas ?

Dicas

(i) Retas paralelas ao eixo x (y = 0  \cdot x + 0  , x \in \mathbb{R} ) possuem o coeficiente angular nulo . São retas descritas por equações como por exemplo y = 0 \cdot x +  0.956532265656523265656 ; y = 0 \cdot x +\pi ^{\pi^{\pi}} onde x varia-se livremente nos conjunto dos reais .

(ii) Quando g(x) = 0 , g(x) < 0 e g(x) > 0 , para que números reais cada caso acontecerá ??


(iii)

g é uma função racional (razão entre polinômios) , estudar o comportamento de g no infinito corresponde a estudar a tendência entre a razão do termo dominante presente do numerador de g(x) pelo termo dominante presente no denominador desta aplicação .

Este item se resume a computar lim_{x\to \pm\infty }  \frac{x}{x^2}  =      lim_{x\to \pm \infty }  \frac{1}{x} =  ... .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: