• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada em pontos definidos.

Derivada em pontos definidos.

Mensagempor Carolminera » Qua Jul 02, 2014 16:03

O deslocamento ( em metros ) de uma partícula movendo-se ao longo
de uma reta é dado pela equação s(t) = t^2? 8t + 18, onde t é medido em segundos.
Encontre as velocidades médias sobre os seguintes intervalos de tempo [3,4], [3.5, 4], [4,
5] [4, 4.5]. Encontre a velocidade instantânea quando t = 4. Faça o gráfico de s como
função do tempo e desenhe as retas secantes, cujas inclinações são as velocidades
médias pedidas e a reta tangente ao gráfico no ponto (4,2).

Alguém ajuda?
Carolminera
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qua Jul 02, 2014 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Física Médica
Andamento: cursando

Re: Derivada em pontos definidos.

Mensagempor Russman » Qua Jul 02, 2014 18:40

Lembre-se que a velocidade média v_m desenvolvida pelo móvel no intervalo de tempo [t_1,t_2] é definida como

v_m = \frac{\Delta s}{\Delta t}

onde \Delta s = s(t_2) - s(t_1) é o deslocamento sofrido e \Delta t = t_2 - t_1.

Assim, por exemplo, para calcular a velocidade média desenvolvida no intervalo [3,4] basta substituir, já que é conhecida, os valores de tempo na função deslocamento. Veja,

v_m = \frac{s(4) - s(3)}{4-3} = \frac{4^2 - 8.4 + 18 - (3^2 - 8.3 + 18)}{1} = 16+8.(-4+3)-9 =
= 16 - 8-9 = -1

Não se engane com o sinal negativo. Ele e o sinal positivo apenas indicam o sentido do movimento. Se a posição cresce para a direita(como usualmente se faz) e a velocidade média desenvolvida no intervalo de tempo de interesse tem sinal negativo, então o móvel se desloca no sentido de decrescimento da posição nesse intervalo de tempo. Ou seja, para a esquerda.

A velocidade instantânea v(t) é calculada para um instante de tempo específico através do limite

v(t) = \lim_{\Delta t \rightarrow 0 }\frac{\Delta s(t)}{\Delta t}

que , na prática, é a derivada com relação a t da função posição. Isto é,

v(t)= \frac{\mathrm{d} }{\mathrm{d} t}s(t).

Portanto, v(t) = 2t - 8 e basta substituir t pelo instante que se deseja calcular a velocidade instantânea.

No conhecimento desta, é útil saber(e simples de mostrar) que a velocidade média desenvolvida no intervalo [t_1,t_2] se relaciona com a velocidade instantânea nos instantes t_1 e t_2 por

v_m = \frac{v(t_1) +v(t_2)}{2}.

Ou seja, a velocidade média desenvolvida no intervalo de tempo de interesse é a média aritmética simples das velocidades instantâneas desenvolvidas nos extremos desse intervalo.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Derivada em pontos definidos.

Mensagempor Carolminera » Qui Jul 03, 2014 11:49

Muuuito obrigada!
Carolminera
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qua Jul 02, 2014 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Física Médica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 34 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D