• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[integral definida] - dúvida em exercício

[integral definida] - dúvida em exercício

Mensagempor natanaelskt » Qua Jul 02, 2014 02:13

Não estou entendendo como faz esse exercício. o A eu entendi. porém esses outros dois eu não sei fazer. eu não entendo essas expressões em cima da integral. alguém poderia me explicar como resolve?
Anexos
dúvida nas integrais..PNG
natanaelskt
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Seg Mar 11, 2013 15:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [integral definida] - dúvida em exercício

Mensagempor e8group » Qua Jul 02, 2014 14:04

Note que \boxed {\frac{d}{dx}  \left( \int_{q(x)}^{p(x) }  g(t) dt   \right)  =  g(p(x)) \cdot p'(x) - g(q(x)) \cdot q'(x) } .

Sem rigor, apenas p/ termos uma noção de um resultado ...

Para começar seja f(x) = \int_{a}^x g(t) dt (a constante ) . Segue-se

\frac{f(x+h) - f(x)}{h} =  \frac{1}{h} \left( \int_{a}^{x+h}  g(t)dt  -  \int_{a}^{x}  g(t)dt  \right)  =

=  \frac{1}{h} \int_x^{x+h}  g(t) dt .

Quando h \to 0 , a integral de g sobre o intervalo [x,x+h] pode ser aproximada por g(x) \cdot h e com isso f'(x) = g(x) .Alternativamente ,deixe I ser um intervalo fechado de extremos x, x+h .Temos que

h \cdot \sup_{\zeta \in I } g(\zeta) \geq \int_x^{x+h}  g(t) dt \geq h \cdot \inf_{\zeta \in I } g(\zeta) sse

\sup_{\zeta \in  I}  g(\zeta)  \geq  \frac{1}{h}   \int_x^{x+h}  g(t) dt \geq  \inf_{\zeta \in I } g(\zeta) .

Quando h\to 0, tem-se que g(x) = \sup_{\zeta \in I } g(\zeta) \geq \frac{1}{h}  \int_x^{x+h}  g(t) dt \geq  \inf_{\zeta \in I } g(\zeta) = g(x) e portanto f'(x) = g(x) .

Como consequência da fórmula obtida juntamente com a regra da cadeia , vamos ter [f(p(x))]' = f'(p(x)) \cdot p'(x) = g(p(x))p'(x) . Agora vamos obter a fórmula destacada .Para tal ,fixe x e suponha p(x) \neq q(x) (o caso q(x) = p(x) é trivial) . Neste caso , existe k entre p(x) e q(x) .(O intervalo não é degenerado) e assim

\int_{q(x)}^{p(x)}  g(t) dt = \int_{q(x)}^k g(t) dt  +  \int_{k}^{p(x)}   g(t) dt   = \int_{k}^{p(x)}   g(t) dt -  \int_{k}^{q(x)}   g(t) dt   . . Daí, ao derivarmos com respeito à x e utilizando os resultados obtidos teremos a fórmula destacada .

Agora basta aplicar a fórmula em cada exercício e fazer a pior parte, contas !
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}