• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral recursiva]Transformadas de Fourier

[Integral recursiva]Transformadas de Fourier

Mensagempor luisbaixo » Dom Jun 29, 2014 16:56

Fala pessoal tudo bem? Então , eu to com dificuldade pra enxergar a recursividade dessa integral para a transformada cosseno de fourier

Fc(e^-x) o resultado deve ser :(2/pi)*(e^-x)*(-cos(wx)+w*sen(wx))/(1+w²) = (2/pi)^1/2*1/(1+w²)

entretanto eu travei aqui : \sqrt[2]{2/pi}*[-{e}^{-x}*cos(wx)-w*{e}^{-x}*sen(wx)+{w}^{2}\int_{0}^\infty e^{-x}*cos(wx)dx


nao consigo enxergar como isso vai ser recursivo , pra mim o grau vai apenas aumentando... , obrigado!!
luisbaixo
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Mai 09, 2014 01:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Integral recursiva]Transformadas de Fourier

Mensagempor e8group » Dom Jun 29, 2014 18:11

Para a transformação Fourier ser puramente de cossenos , a aplicação f não deveria ser par ?
E outra ....Não acha mais simples usar a definição F(t)(\omega)  := \int_{-\infty}}^{+\infty}  f(t) epx(-i\omega t) dt já que estar a trabalhar com f(t) = exp(-t) ?

De qualquer forma ...Deixo uma dica para computar integrais da forma \int epx(kx) cos(x) dx .
Fixe k \neq 0 .
Deixe I_A( f(x)) = \int_A exp(kx) f(x) dx = \int_a^b  exp(kx) f(x) dx e D I_A(f(x)) = \left[exp(kx) f(x)\right]_{a}^b .

Por partes , tem-se que (com f(x)= sin(x) )

I_A( sin(x)) = \int_A exp(kx) sin(x) dx =   \frac{1}{k}  \int_A  \left(\frac{d}{dx}[ exp(kx)sin(x) ]   -  exp(kx)cos(x) \right) dx =  \frac{1}{k} DI_A(sin(x)) - \frac{1}{k} I_A(cos(x)) .

Aplicando a fórmula acima ,

I_A( cos(x)) = \int_A exp(kx) cos(x) dx =   \frac{1}{k}  \int_A  \left(\frac{d}{dx}[ exp(kx)cos(x) ]   +  exp(kx)sin(x) \right) dx =  \frac{1}{k} DI_A(cos(x))  +\frac{1}{k} I_A(sin(x)) .

E com isso tem-se o sistema

\begin{cases}    k I_A(sin(x)) +  I_A(cos(x)) =  D I_A(sin(x)) \\  k I_A(cos(x))-  I_A(sin(x))  =  D I_A(cos(x))\end{cases} .

Resolvendo encontrará o que se pede . Basta fazer primeiro uma subs. simples x \omega = u e depois tomar k = -u / \omega .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Integral recursiva]Transformadas de Fourier

Mensagempor luisbaixo » Ter Jul 01, 2014 11:00

Obrigado cara , ajudou bastante! Mas agora tenho outra dúvida.

Estou com dúvida na parte de modelagem de EDP's , especificamente na parte da equação da onda. Estou com o seguinte problema

Encontre u(x,t) para a corda de comprimento L = 1 e c² = 1 quando a velocidade inicial for zero e a deflexão inicial com pequenos valores de k (digamos 0,01) for como se segue.

2)k(sen(pi*x) - (1/3)*sen(3*pi*x))
4)kx(1-x²)
O negócio é que eu sei que tenho que usar U(x,o) = E(Bn*sen(n*pi*x/L)) mas só isso(nem o Bn eu to entendendo mais haha) , nao sei como fazer o resto estou realmente perdido =/


E sei também que o u(x,t) = E(Bn*cos(at)+Bn*sen(at))*sen(n*pi*x/L) e que a = lambda = c*n*pi/L , certo?
Obrigado!
luisbaixo
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Mai 09, 2014 01:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.