• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada Implicita

Derivada Implicita

Mensagempor Janoca » Dom Jun 22, 2014 02:40

Questão:

Suponha que y=f(x) seja uma função derivável dada implicitamente pela equação y^3 + 2xy^2+x=4. suponha, ainda, que 1\in {D}_{f}.
a) Calcule f(1).

b) Determine a equação da reta tangente ao gráfico de f no ponto de abscissa 1.

Não consigo resolver, pq a letra a é igual a 1. eu sei como resolver a reta tangente, mas como não entendi o f(1), não da de fazer a letra b.

Ajudem-me
Janoca
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Sex Jun 06, 2014 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Derivada Implicita

Mensagempor e8group » Dom Jun 22, 2014 12:57

Não conseguiu ? Talvez conseguiste , check a resolução abaixo .

A reta requerida passa pelo ponto (1,f(1)) e seu coeficiente angular é \lim_{x\to 1}  \frac{f(x) - f(1) }{x-1} que igual a f'(1) se o limite for finito e existir; se dê infinito, bem provável que esta reta é perpendicular à reta y = 0  ,  x \in \mathbb{R} (eixo x) e se for finito , em particular zero , esta reta será paralela ao eixo x . Tô dizendo isso , por que estas duas situações podem ocorrer . Segue de (a) ,

[y^3 +2xy^2 +x]' = 0 \iff 3 y^2 y' + 2y^2 + 4x yy'  + 1 = 0 , \forall x \in D_f .

Levando em conta que seus cálculos estão certos y(1) = 1 ,

3y'(1) + 2 + 4y'(1) +1  = 0 \iff [/tex] 7 y'(1) + 3 = 0 [/tex] \iff y'(1) = - \frac{3}{7} .

Da forma que você se expressou , pensei que uma daquelas situações tinha ocorrido , mas não .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Derivada Implicita

Mensagempor Janoca » Ter Jun 24, 2014 16:52

Obrigada pela dica, de fato consegui fazer a questão.
Janoca
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Sex Jun 06, 2014 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Derivada Implicita

Mensagempor jugrigori » Dom Jun 03, 2018 16:05

Eu não entendi a questão, como eu encontro o f(1)?
jugrigori
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Mai 10, 2018 20:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}