• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integrais impróprias

Integrais impróprias

Mensagempor cardoed001 » Dom Jun 08, 2014 17:49

Boa tarde,

Alguém, por favor, poderia me explicar porque a integral \int_{o}^{\infty} cos(\pi*x)dx é divergente?

Eu cheguei na resposta:

\lim_{b\rightarrow\infty} (sin (\pi*b))/\pi (com limite superior b e inferior zero, para calcular a integral definida), mas não intendi porque ela diverge.

Muito obrigado.
cardoed001
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Dom Set 15, 2013 00:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: Integrais impróprias

Mensagempor e8group » Dom Jun 08, 2014 22:15

Justamente por que o último limite está oscilando entre -1 e 1 , e portanto tal limite não nos diz nada . Se tal limite convergisse para algum n° L , então nas diversas formas de b ir para +\infty , estes limites tbm valeriam L .

Por exemplo, tome b = n/2 com n natural .

Note que sin( \pi b) = \sin(\pi \cdot  \frac{n}{2}) =  sin(\frac{\pi}{2} \cdot n ) = \begin{cases}   0    ; n= 2,4,6,8,\hdots  \\ 
1  ;  n= 1 ,5,9,13 \hdots  \\  -1  ;  n = 3,7,11,15 \hdots  \end{cases} .

Verifique !

Ou seja, quanto n for suficiente grande b também o será e o resultado do limite poderá ser 0,1,-1 dependendo de n .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Integrais impróprias

Mensagempor cardoed001 » Dom Jun 08, 2014 22:39

Muitíssimo obrigado,

Então essa oscilação faz com que a integral seja divergente.

Valeu mesmo.
cardoed001
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Dom Set 15, 2013 00:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: