• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Resolução de limites

Resolução de limites

Mensagempor Ana Saldanha » Sáb Mai 24, 2014 16:39

Não consegui resolver este limite:

lim_{{0,5}^{-}}\frac{2x-1}{\left|2{x}^{3}-{x}^{2} \right|}

É um exercício do livro do James Stewart. A resposta é -4

poderiam me ajudar?
Obrigada
Ana Saldanha
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Mar 22, 2014 16:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Resolução de limites

Mensagempor e8group » Sáb Mai 24, 2014 17:44

Bom dia ,notasse o problema indeterminado "0/0" ?
Veja que 0.5 é raiz dos dois polinômios do numerador e denominador e também que 0(multiplicidade 2) é raiz do denominador ; de fato : 2x^3  -x^2 = (2x)x^2 - x^2 = x^2(2x -1) . Por definição de módulo , definida qualquer aplicação em que sua imagem é subconjunto dos reais , vale que

|f(x)| =  \begin{cases} f(x)   \text{se existe x tal que } f(x) =0  \ \text{ou} \   f(x) > 0\\  -f(x)    \text{se existe x tal que  } f(x)  <0  \end{cases}

Tendo em conta que | 2x^3 -x^2 | = |x^2(2x-1)| =|x^2||2x-1| = x^2 |2x-1| para todo x , basta então verificar quando 2x-1 é positivo,nulo ou negativo e assim usar a expressão correspondente que condiz com intervalo que você está trabalhando .

Poderíamos pensar ,o que a função 'faz' com valores menores que 0.5 ,mas muito muito próximos dos mesmo . Isto é , dado \delta > 0suficientemente pequeno o quanto você queira , o que acontece com f(x) com x \in (0.5 - \delta, 0.5) ? Será que f(x) se aproxima de um número real L ,de modo que exista \epsilon > 0 pequeno (demais !) para qual o erro cometido na aproximação de f(x) por L seja sempre menor que \epsilon ?

Na verdade o processo mais natural é ao contrario , vc verifica intuitivamente que f(x) se aproximar de um numero L para x em um intervalo (a princípio desconhecido ) , vc então resolve formalizar está intuição e propõe um \epsilon > 0 qualquer , quanto menor ele ,mais próximos estaremos de L , certo ? Desde que x verifique isso . E para x verificar isto , vc tbm verifica e existência do \delta > 0 pequeno (mt mesmo !) dependendo do \epsilon para o qual f(x) se aproxima de L com erro sempre menor que \epsilon sempre que x está em (0.5 -\delta ,0.5) .

Enfim , só quero frisar que calcular \lim_{x\to 0.5}  f(x) é estudar f(x) na vizinhança de 0.5 (o ponto 0.5 não importa ! E sim , seus "vizinhos" ) .

Dependendo de onde vc está , o sinal de 2x-1 será -1 ou +1 , em qual situação está mesmo ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59