• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Resolução de limite] Teorema do Confronto

[Resolução de limite] Teorema do Confronto

Mensagempor nievag » Ter Mai 13, 2014 00:58

No livro de James Stewart a resposta é 5, alguém consegue provar isso através do teorema do confronto?
Imagem
nievag
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Mai 13, 2014 00:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Resolução de limite] Teorema do Confronto

Mensagempor e8group » Ter Mai 13, 2014 10:50

P/a função seno avaliados em valores suficientemente pequenos , digamos \alpha , temos que sin(\alpha) \approx  \alpha . Este fato é evidente , do ponto de vista geométrico . Dá circunferência unitária vemos que o valor real de sin(\alpha) difere pouco de \alpha (compare \alpha com a projeção do mesmo sobre o eixo ) . Observe que para x grande (positivamente ou negativamente ) , a nossa expectativa é que sin(5/x^2)  \approx  5/x^2 isto nos leva a x^2 sin(5/x^2) \approx  5 . Quanto vale o limite ? Este limite tem alguma relação com o limite fundamental envolvendo o seno ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.