• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integral

integral

Mensagempor ilane » Dom Abr 27, 2014 14:02

\int (1 - sen x^)2 cos x dx


eu achei a seguinte resposta gostaria de saber se encontrei o resultado certo

= \fracc{sen ^3}{3}+ sen (x) - cos^2 + constante esse e o meu resultado
ilane
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Ter Abr 08, 2014 10:53
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: integral

Mensagempor alienante » Ter Abr 29, 2014 16:13

se eu chamar u=sin(x)\rightarrow du=cos(x)dx, logo \int_{}^{}{(1-sin(x))}^{2}cos(x)dx=\int_{}^{}{(1-u)}^{2}du=\int_{}^{}1-2u+{u}^{2}du=u-u^2+\frac{u^3}{3}+c=sin(x)-sin^2(x)+\frac{sin^3(x)}{3}+c
alienante
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Seg Nov 25, 2013 19:18
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)