por Jhenrique » Ter Abr 01, 2014 00:31
Compondo funções trigonométricas, você perceberá que as principais substituições se relacionam com a tabela abaixo:

Então comecei a integrar cada uma das expressões acima e criei uma nova tabela:

No entanto, eu desgostei do resultado da integral circulada em vermelho, porque, na verdade, eu não sei transformar a função arctan(...) numa expressão similar às expressões das duas integrais (de cima e de baixo) adjacentes. Eu tentei alguma coisa, vejam:

Mas este resultado não é suficientemente parecido com a integrais de

e

.
Você tem ideia de como fazer tal integral ser parecida com as demais?
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
-
Jhenrique
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Dom Mai 15, 2011 22:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em Mecânica
- Andamento: formado
por Russman » Qua Abr 02, 2014 18:26
Você precisa calcular o loraritmo do argumento complexo usando de análise complexa.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [integrais usando substituições indicadas]
por Giu » Sáb Fev 11, 2012 14:08
- 1 Respostas
- 1475 Exibições
- Última mensagem por LuizAquino

Sáb Fev 11, 2012 14:21
Cálculo: Limites, Derivadas e Integrais
-
- [Substituições trigonométricas]Resolução de apostila básica
por sabaku » Ter Dez 06, 2011 23:49
- 0 Respostas
- 2188 Exibições
- Última mensagem por sabaku

Ter Dez 06, 2011 23:49
Pedidos
-
- [Substituições trigonométricas] Dúvida para resolver exercíc
por anieli » Qui Dez 15, 2011 09:58
- 2 Respostas
- 1710 Exibições
- Última mensagem por anieli

Qui Dez 15, 2011 23:50
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Estou com dificuldade para resolver esta integral
por Paulo Perez » Qui Out 03, 2013 12:22
- 2 Respostas
- 4133 Exibições
- Última mensagem por Paulo Perez

Sex Out 04, 2013 16:32
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAL] Integral por partes! Alguem pode me ajudar?
por mih123 » Qua Jan 16, 2013 20:18
- 3 Respostas
- 4428 Exibições
- Última mensagem por adauto martins

Qua Out 22, 2014 09:11
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.