• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integrais - Sólido de revolução

Integrais - Sólido de revolução

Mensagempor Francielly Novais » Sáb Mar 29, 2014 17:02

- Considere uma superfície esférica de raio . Determine a área que é removida dessa superfície por um cone com vértice no centro da esfera, se, no vértice, a seção meridiana do cone tem um ângulo de 2? radianos.

Alguém poderia me ajudar nessa questão, seria de grande ajuda!

E um esboço feito: http://sketchtoy.com/59910201

Eu fiz achando a equação do cone, agora estou na duvida. Eu acho a equação (área do cone) e integro ou tenho achar também a área da circunferência?
Quem seria a altura do cone.

O volume de um sólido por revolução é dado pela função V =??[f(x)]²dx
V= ?r²h
V= ?a²h
Quem seria h?
Me ajudem, n sei como resolver essa questão
Francielly Novais
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Mar 29, 2014 16:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Integrais - Sólido de revolução

Mensagempor young_jedi » Dom Mar 30, 2014 12:18

neste caso voce esta querendo calcular a area portanto a integral sera

A=\int 2\pi.y.dl

dl=\sqrt{\left(\frac{dx}{d\phi}\right)^2+\left(\frac{dy}{d\phi}\right)^2}d\phi

A=\int 2\pi.y.\sqrt{\left(\frac{dx}{d\phi}\right)^2+\left(\frac{dy}{d\phi}\right)^2}d\phi

como se trata da revoluçãom de uma circunferencia para formar uma esfera então

x=R.cos(\phi)

y=R.sen(\phi)


\frac{dx}{d\phi}=-R.sen\phi

\frac{dy}{d\phi}=R.cos\phi

A=\int_{0}^{\theta} 2\pi.R.sen\phi.\sqrt{R^2.sen^\phi+R^2.cos^2\phi}d\phi

A=\int_{0}^{\theta}2\pi.R.sen\phi.\sqrt{R^2}d\phi

A=\int_{0}^{\theta}2\pi.R^2.sen\phi.d\phi

A=2\pi.R^2\int_{0}^{\theta}.sen\phi.d\phi
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 53 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.