por MundiTec » Sex Mar 21, 2014 13:31
Bom dia a todos do forum, peço a ajuda para resolver um trabalho de calculo onde estou com dificuldades de montar os grafico e
gerar a função .
Abaixo o enunciado do trabalho
----------------------------------------------
Pesquisar o conceito de velocidade instantânea a partir do limite, com ?t ?0
Comparar a fórmula aplicada na física com a fórmula usada em cálculo e explicar o
significado da função v (velocidade instantânea), a partir da função s (espaço), utilizando o
conceito da derivada que você aprendeu em cálculo, mostrando que a função velocidade é a
derivada da função espaço.
Dar um exemplo, mostrando a função velocidade como derivada da função do espaço,
utilizando no seu exemplo a aceleração como sendo 25
---------------------------------------------
Se puderem me ajudar a montar os calculos para este enunciado desde ja fico muito grato pela atenção
Eu li as regras do forum sobre nao postar apenas enunciados mas eu realmente nao consegui começar este exercicio
Estou pesquisando muito sobre o assunto
obrigado a todos
-
MundiTec
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Mar 21, 2014 13:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Civil
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Calculo velocidade instantanea
por marcomac78 » Qui Nov 08, 2012 23:36
- 1 Respostas
- 1704 Exibições
- Última mensagem por MarceloFantini

Sex Nov 09, 2012 00:31
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo, Valor Médio. Velocidade instantânea.
por leocastilho » Qua Jun 12, 2013 12:35
- 1 Respostas
- 1553 Exibições
- Última mensagem por e8group

Qua Jun 12, 2013 22:40
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Prove a partir da definição de limite
por Ruan Petterson » Qui Nov 28, 2013 23:13
- 6 Respostas
- 3425 Exibições
- Última mensagem por e8group

Sex Nov 29, 2013 10:05
Cálculo: Limites, Derivadas e Integrais
-
- Prova a partir da definição de limite para uma função 3 grau
por diegol » Qui Abr 24, 2014 12:16
- 3 Respostas
- 4274 Exibições
- Última mensagem por e8group

Sex Abr 25, 2014 00:16
Cálculo: Limites, Derivadas e Integrais
-
- Taxa de variação instantânea.
por Sobreira » Ter Set 03, 2013 01:46
- 1 Respostas
- 1522 Exibições
- Última mensagem por Russman

Ter Set 03, 2013 17:23
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.