• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Volume] Integral dupla

[Volume] Integral dupla

Mensagempor Claudio Parana » Qua Fev 05, 2014 21:33

Encontre o volume do sólido limitado superiormente por z = {e}^{x+2y} e inferiormente pelo triangulo D com vertices em (0,0), (1,0), (0,1)
Claudio Parana
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Fev 05, 2014 19:26
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Volume] Integral dupla

Mensagempor young_jedi » Seg Fev 17, 2014 21:27

a equação da reta do triangulo que vai de (1,0) até (0,1) é dada por

y=1-x

portanto a integral dupla ficaria

\int_{0}^{1}\int_{0}^{1-x}e^{x+2y}dydx

tente resolver a integral e comente qualquer duvida
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1237
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.