• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[SÉRIE] teste da integral

[SÉRIE] teste da integral

Mensagempor magellanicLMC » Qua Fev 05, 2014 20:38

determine pelo teste da integral se a série é convergente ou divergente
\sum_{2}^{\infty} \frac{1}{nln(n)}
eu sei fazer o teste (é divergente) mas n consigo desenvolver as condições que seriam:
1) ser decrescente (provando pelo teste da derivada primeira
2) ter termos positivos p/ x\succeq1 e ser contínua
mas n consigo calcular a derivada primeira (acredito que seja pela regra do quociente)
magellanicLMC
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Jan 28, 2014 20:35
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [SÉRIE] teste da integral

Mensagempor e8group » Qui Fev 06, 2014 11:55

Dica :

Defina f : (1,+\infty)  \mapsto \mathbb{R}   ;    f(x) = \frac{1}{xln(x)} e considere a_n = f(n) , n = 2 ,3,4, \hdots .

(i) Sempre n+1 > n ,então (n+1)ln(n+1) >  nln(n) ... ( qualquer função logarítmica é estritamente monótona)

(ii) Mostrar que f(n) > 0 , \forall n é o suficiente mostrar que ln(n) > 0 , \forall n . Para tal , basta usar que n > 1 e que qualquer função logarítmica é estritamente monótona .Quanto a continuidade , se a > 1 então o limite da função quando x \to a é o próprio valor da função no ponto a (Fácil verificar) .

É isso . Espero que ajude .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}